VVixWorks ©

Programmer’s Guide

5.3.1

Edition 1

ﬁWdeM;r

Copyright 00 1984 - 1998 Wind River Systems, Inc.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy,
microfilm, retrieval system, or by any other means now known or hereafter invented without the
prior written permission of Wind River Systems, Inc.

VxWorks, Wind River Systems, the Wind River Systems logo, and wind are registered trademarks of
Wind River Systems, Inc. CrosswWind, IX\Works, Tornado, VXMP, VxSim, VXVMI, WindC++, WindConfig,
Wind Foundation Classes, WindNet, WindPower, WindSh, and WindView are trademarks of

Wind River Systems, Inc.

All other trademarks used in this document are the property of their respective owners.

Corporate Headquarters Europe Japan

Wind River Systems, Inc.
1010 Atlantic Avenue

Wind River Systems, SAR.L.
19, Avenue de Norvege

Wind River Systems Japan
Pola Ebisu Bldg. 11F

Alameda, CA 94501-1153 Immeuble B4, Batiment 3 3-9-19 Higashi

USA Z.A. de Courtaboeuf 1 Shibuya-ku
91953 Les Ulis Cédex Tokyo 150
FRANCE JAPAN

toll free (Us): 800/545-WIND

telephone: 510/748-4100 telephone: 33-1-60-92-63-00 telephone: 81-3-5467-5900

facsimile: 510/814-2010 facsimile: 33-1-60-92-63-15 facsimile: 81-3-5467-5877
CUSTOMER SUPPORT
Telephone E-mail Fax
Corporate: 800/872-4977 toll free, U.S. & Canada support@wrs.com 510/814-2164
510/748-4100 direct
Europe: 33-1-69-07-78-78 support@wrsec.fr 33-1-69-07-08-26
Japan: 011-81-3-5467-5900 support@kk.wrs.com 011-81-3-5467-5877

If you purchased your Wind River Systems product from a distributor, please contact your
distributor to determine how to reach your technical support organization.

Please provide your license number when contacting Customer Support.

VxWorks Programmer’s Guide, 5.3.1
Edition 1

4 Mar 98

Part #: DOC-12067-ZD-00

1 OVerVIEW ..coccveiiieiieiie s
2 BaSiCOS ..o
3 /O SYStem ...cccccvevieevieeiieieenn,
4 Local File Systemscccoeeene
5 Network ...ocooccvoiiiiiiniiiiinis
6 Shared-Memory Objects
7 Virtual Memory Interface
8 Configurationccccoeeviieiinninnns
9 Target Shellcccceevvvevevveinene,
10 C++ Developmentcccoeeeenee.
Appendices

A Motorola MC680x0

B Sun SPARC, SPARCIite

Contents

fii

VxWorks 5.3.1
Programmer’s Guide

CINEIIGBO i 525
D INEEI X8O ..ot 539
E MIPS R3000, R4000, RAB50cccovrrevermeiirmeenreenreeseeneneeneens 579
F' POWEIPC ..ot 593

INAEX vt 609

11

1.2

13

1.4

15

1.6

Overview

([ge o [UTox 110] o TR TR PP 3
Getting Started with the Tornado Development System —ccccooiiiiee e, 3
VxWorks: A Partner in the Real-time Development Cycle ccoociiiiiiiieeenn, 4
VXWOrks FacilitieS: AN OVEIVIEW .ot 5
Multitasking and Intertask Communicationsc.ccccccvevveiunnnn. 7
POSIX INTEITACES ..o 8
17O SYSLEIM oo 8
Local File SYStEMSccvciicice e 9
INEIWOIK .. 11
Virtual Memory (Including VXVMI Option)c.cccceeeveiiinnnnnne 13
Shared-Memory Objects (VXMP Option)cccoceveniieinienienne. 14
Target-Resident TOOISccovviieiicc e 14
C++ Development (including Wind Foundation Classes Option) 15
ULIHILY LIDFarieSooveoiiiece et 15
Performance Evaluation ... 17
TArget AQENT oo 18
Board Support Packages (BSPS)cccoverinininenenieiereeeeeeeei 18
VxWorks Simulator (VXSim Option) ... 19
CUSEOMET SEIVICES 1oveiriiiiieeiiieiieesiee st esteeste st e s tesstesssbeesbe e s b e e nbeessae e nbeessneebes 20
Documentation CONVENLIONS .iovvvvivieriieiieesieesiee e sieesieesbeesneseeesinesseeessnesees 21

VxWorks 5.3.1
Programmer’s Guide

List of Tables

Table 1-1 Font Usage for Special Termscccoeeviinenniniennenn 21

List of Figures

Figure 1-1 Interaction Between Target Server and Target Agent 18

1
Overview

1.1 Introduction

This manual describes VxWorks, the high-performance real-time operating system
component of the Tornado development system. This manual includes the
following information;

= How to use VxWorks facilities in the development of real-time applications.
= How to use the target-resident tools included in VxWorks.

» How to use the optional components VxVMI, VxMP, and Wind Foundation
Classes.

This chapter begins by providing pointers to information on how to set up and
start using VxWorks as part of the Tornado development system. It then provides
an overview of the role of VxWorks in the development of real-time applications,
an overview of VxWorks facilities, a summary of Wind River Systems customer
services, and a summary of the document conventions followed in this manual.

1.2 Getting Started with the Tornado Development System

See the following documents for information on installing and configuring the
Tornado development system, including VxWorks. Information on configuration
differs depending on whether your development host is UNIX or Windows; thus,
the Tornado User’s Guide is host specific.

The Wind River Products Installation Guide provides information on installing
all components of the Tornado Development System.

VxWorks 5.3.1
Programmer’s Guide

= The Tornado User’s Guide provides information on configuring and connecting
the host and target environments, building your VxWorks application, booting
VxWorks, and running Tornado.

For either host, 8. Configuration in this manual provides advanced VxWorks
configuration information.

For a complete overview of Tornado documentation, see the documentation guide
in the Tornado User’s Guide.

1.3 VxWorks: A Partner in the Real-time Development Cycle

UNIX and Windows hosts are excellent systems for program development and for
many interactive applications. However, they are not appropriate for real-time
applications. On the other hand, traditional real-time operating systems provide
poor environments for application development or for non-real-time components
of an application, such as graphical user interfaces (GUIs).

Rather than trying to create a single operating system that “does it all,” the Wind
River philosophy is to utilize two complementary and cooperating operating
systems (VxWorks and UNIX, or VxWorks and Windows) and let each do what it
does best. VxWorks handles the critical real-time chores, while the host machine is
used for program development and for applications that are not time-critical.

You can scale VxWorks to include exactly the feature combinations your
application requires. During development, you can include additional features to
speed your work (such as the networking facilities), then exclude them to save
resources in the final version of your application.

You can use the cross-development host machine to edit, compile, link, and store
real-time code, but then run and debug that real-time code on VxWorks. The
resulting VxWorks application can run standalone—either in ROM or disk-
based—with no further need for the network or the host system.

However, the host machine and VVxWorks can also work together in a hybrid
application, with the host machine using VxWorks systems as real-time “servers”
in a networked environment. For instance, a VxWorks system controlling a robot
might itself be controlled by a host machine that runs an expert system, or several
VxWorks systems running factory equipment might be connected to host
machines that track inventory or generate reports.

1
Overview

1.4 VxWorks Facilities: An Overview

This section provides a summary of VxWorks facilities; they are described in more
detail in the following subsections. For details on any of these facilities, see the
appropriate chapters in this manual.

High-Performance Real-time Kernel Facilities

The VxWorks kernel, wind, includes multitasking with preemptive priority
scheduling, intertask synchronization and communications facilities, interrupt
handling support, watchdog timers, and memory management.

POSIX Compatibility

VxWorks provides most interfaces specified by the 1003.1b standard (formerly
the 1003.4 standard), simplifying your ports from other conforming systems.

1/0 System

VxWorks provides a fast and flexible ANSI C-compatible 1/0 system,
including UNIX standard buffered 1/0 and POSIX standard asynchronous
1/0. VxWorks includes the following drivers:

Network driver — for network devices (Ethernet, shared memory)
Pipe driver — for intertask communication

RAM “disk” driver — for memory-resident files

SCSI driver — for SCSI hard disks, diskettes, and tape drives

Keyboard driver for PC x86 keyboards (x86 BSP only)

Display driver for PC x86 VGA displays (x86 BSP only)

Disk driver — for IDE and floppy disk drives (x86 BSP only)
Parallel port driver for PC-style target hardware

Local File Systems

VxWorks provides fast file systems tailored to real-time applications. One file
system is compatible with the MS-DOS® file system, another with the RT-11 file
system, a third is a “raw disk” file system, and a fourth supports SCSI tape
devices.

Network Facilities

VxWorks provides “transparent” access to other VxWorks and TCP/IP-
networked systems, a BSD?! Sockets-compliant programming interface, remote
procedure calls (RPC), SNMP (optional), remote file access (including NFS
client and server facilities and a non-NFS facility utilizing RSH, FTP, or TFTP),

1. BSD stands for Berkeley Software Distribution, and refers to a version of UNIX.

VxWorks 5.3.1
Programmer’s Guide

BOOTP, and proxy ARP. All VxWorks network facilities comply with standard
Internet protocols, both loosely coupled over serial lines or standard Ethernet
connections and tightly coupled over a backplane bus using shared memory.

Virtual Memory (Including VxVMI Option)

VxWorks provides both bundled and unbundled (VxVMI) virtual memory
support for boards with an MMU, including the ability to make portions of
memory noncacheable or read-only, as well as a set of routines for virtual-
memory management.

Shared-Memory Objects (VXMP Option)

The VXMP option provides facilities for sharing semaphores, message queues,
and memory regions between tasks on different processors.

Target-resident Tools

In the Tornado development system, the development tools reside on the host
system; see the Tornado User’s Guide for details. However, a target-resident
shell, module loader and unloader, and symbol table can be configured into
the VxWorks system if necessary.

Wind Foundation Classes

In addition to general C++ support including the lostreams library from
AT&T, the optional component Wind Foundation Classes adds the following
C++ object libraries:

— VxWorks Wrapper Class library
— Tools.h++ library from Rogue Wave
— Booch Components library from Rogue Wave

Utility Libraries

VxWorks provides an extensive set of utility routines, including interrupt
handling, watchdog timers, message logging, memory allocation, string
formatting and scanning, linear and ring buffer manipulations, linked-list
manipulations, and ANSI C libraries.

Performance Evaluation Tools

VxWorks performance evaluation tools include an execution timer for timing
aroutine or group of routines, and utilities to show CPU utilization percentage
by task.

1
Overview

Target Agent

The target agent allows a VxWorks application to be remotely debugged using
the Tornado development tools.

Board Support Packages

Board Support Packages (BSPs) are available for a variety of boards and
provide routines for hardware initialization, interrupt setup, timers, memory
mapping, and so on.

VxWorks Simulator (VxSim)

The optional component VxWorks Simulator, available for UNIX
environments only, simulates a VxWorks target for use as a prototyping and
testing environment.

Multitasking and Intertask Communications

Modern real-time systems are based on the complementary concepts of
multitasking and intertask communications. A multitasking environment allows
real-time applications to be constructed as a set of independent tasks, each with a
separate thread of execution and its own set of system resources. The intertask
communication facilities allow these tasks to synchronize and coordinate their
activity.

The VxWorks multitasking kernel, wind, uses interrupt-driven, priority-based task
scheduling. It features fast context switch times and low interrupt latency. Under
VxWorks, any subroutine can be spawned as a separate task, with its own context
and stack. Other basic task control facilities allow tasks to be suspended, resumed,
deleted, delayed, and moved in priority. See 2.3 Tasks, p.30 and the reference entry
for taskLib.

The wind kernel supplies semaphores as the basic task synchronization and
mutual-exclusion mechanism. There are several kinds of semaphores in wind,
specialized for different application needs: binary semaphores, counting
semaphores, mutual-exclusion semaphores, and POSIX semaphores. All of these
semaphore types are fast and efficient. In addition to being available to application
developers, they have also been used extensively in building higher-level facilities
in VXWorks.

For intertask communications, the wind kernel also supplies message queues,
pipes, sockets, and signals. The optional component VXMP provides shared-
memory objects as a communication mechanism for tasks executing on different
CPUs. For information on all these facilities, see 6. Shared-Memory Objects and

POSIX Interfaces

I/O System

VxWorks 5.3.1
Programmer’s Guide

2.4 Intertask Communications, p.54. In addition, semaphores are described in the
semLib and semPxLib reference entries; message queues are described in the
msgQLib and mqgPxLib reference entries; pipes are described in the pipeDrv
reference entry and 2.4.5 Pipes, p.88; sockets are described in the sockLib reference
entry and 2.4.6 Network Intertask Communication, p.89; and signals are described in
the sigLib reference entry and 2.4.7 Signals, p.90.

POSIX (the Portable Operating System Interface) is a set of standards under
development by representatives of the software community, working under an
ISO/IEEE charter. The purpose of this effort is to support application portability at
the source level across operating systems. This effort has yielded a set of interfaces
(POSIX standard 1003.1b, formerly called 1003.4) for real-time operating system
services. Using these interfaces makes it easier to move applications from one
operating system to another.

For a list of POSIX facilities, look under POSIX in the keyword index in the
VxWorks Reference Manual or in the Tornado Online Manuals. Nearly all POSIX
1003.1b interfaces are available in VxWorks, including POSIX interfaces for:

— asynchronous I/0

— semaphores

— message queues

— memory management
— queued signals

— scheduling

— clocks and timers

In addition, several interfaces from the traditional POSIX 1003.1 standard are also
supported.

The VxWorks 1/0 system provides uniform device-independent access to many

kinds of devices. You can call seven basic 1/0 routines: creat(), remove(), open(),
close(), read(), write(), and ioctl(). Higher-level 170 routines (such as ANSI C-
compatible printf() and scanf() routines) are also provided.

VxWorks also provides a standard buffered 1/0 package (stdio) that includes ANSI
C-compatible routines such as fopen(), fclose(), fread(), fwrite(), getc(), and
putc(). These routines increase 1/0 performance in many cases.

1
Overview

The VxWorks 1/0 system also includes POSIX-compliant asynchronous 1/0: a
library of routines that perform input and output operations concurrently with a
task’s other activities.

VxWorks includes device drivers for serial communication, disks, RAM disks,
SCSI tape devices, intertask communication devices (called pipes), and devices on
a network. Application developers can easily write additional drivers, if needed.
VxWorks allows dynamic installation and removal of drivers without rebooting
the system.

Internally, the VxWorks 1/0 system allows individual drivers complete control
over how the user requests are serviced. Drivers can easily implement different
protocols, unique device-specific routines, and even different file systems, without
interference from the 1/0 system itself. VxWorks also supplies several high-level
packages that make it easy for drivers to implement common device protocols and
file systems.

For a detailed discussion of the 1/0 system, see 3. I/O System. Relevant reference
entries include ioLib for basic 1/0 routines available to tasks, fioLib and ansiStdio
for various format-driven I/0 routines, aioPxLib for asynchronous 1/0, and
iosLib and tyLib for routines available to driver writers. Also see the reference
entries for the supplied drivers.

Local File Systems

VxWorks includes several local file systems for use with block devices (disks).
These devices all use a standard interface so that file systems can be freely mixed
with device drivers. A local file system for SCSI tape devices is also included. The
VxWorks 1/0 architecture makes it possible to have several different file systems
on a single VxWorks system, even at the same time.

MS-DOS Compatible File System: dosFs

VxWorks provides the dosFs file system, which is compatible with the MS-DOS file
system (for MS-DOS versions up to and including 6.2). The capabilities of dosFs
offer considerable flexibility appropriate to the varying demands of real-time
applications. Major features include:

= A hierarchical arrangement of files and directories, allowing efficient
organization and permitting an arbitrary number of files to be created on a
volume.

VxWorks 5.3.1
Programmer’s Guide

= The ability to specify contiguous file allocation on a per-file basis. Contiguous
files offer enhanced performance, while non-contiguous files result in more
efficient use of disk space.

= Compatibility with widely available storage and retrieval media. Diskettes
created with dosFs and on MS-DOS personal computers can be freely
interchanged and hard drives created with MS-DOS can be read by dosFs if it
is correctly configured.

= Optional case-sensitive file names, with name lengths not restricted to the MS-
DOS eight-character + extension convention.

Services for file-oriented device drivers using dosFs are implemented in dosFsLib.

RT-11 Compatible File System: rt11Fs

VxWorks provides the rt11Fs file system, which is compatible with that of the RT-
11 operating system. This file system has been used for real-time applications
because all files are contiguous. However, rt11Fs does have some drawbacks. It
lacks a hierarchical file organization that is particularly useful on large disks. Also,
the rigid contiguous allocation scheme may result in fragmented disk space. For
these reasons, dosFs is preferable to rt11Fs.

The VxWorks implementation of the RT-11 file system includes byte-addressable
random access (seeking) to all files. Each open file has a block buffer for optimized
reading and writing.

Services for file-oriented device drivers using rt11Fs are implemented in rt11FsLib.

Raw Disk File System: rawFs

VxWorks provides rawFs, a simple “raw disk file system” for use with disk devices.
rawFs treats the entire disk much like a single large file. The rawFs file system
permits reading and writing portions of the disk, specified by byte offset, and it
performs simple buffering. When only simple, low-level disk 170 is required,
rawFs has the advantages of size and speed.

Services for file-oriented device drivers using rawFs are implemented in
rawFsLib.

SCSI Sequential File System: tapeFs

VxWorks provides a file system for tape devices that do not use a standard file or
directory structure on tape. The tape volume is treated much like a raw device
where the entire volume is a large file. Any data organization on this large file is
the responsibility of a higher-level layer.

10

Network

1
Overview

Services for SCSI sequential device drivers using tapeFs are implemented in
tapeFsLib.

Alternative File Systems

Sockets

In VxWorks, the file system is not tied to the device or its driver. A device can be
associated with any file system. Alternatively, you can supply your own file
systems that use standard drivers in the same way, by following the same standard
interfaces between the file system, the driver, and the VxWorks 1/0 system.

One key to VxWorks’s effective relationship with host development machines is its
extensive networking facilities. By providing a fast, easy-to-use connection
between the target and host systems, the network allows full use of the host
machine as a development system, as a debugging host, and as a provider of non-
real-time services in a final system.

VxWorks currently supports loosely coupled network connections over serial lines
(using SLIP, CSLIP, or PPP) or Ethernet networks (IEEE 802.3). It also supports
tightly coupled connections over a backplane bus using shared memory. VxWorks
uses the Internet protocols as implemented in BSD 4.3 for all network
communications.

In addition to the remote access provided by Tornado, VxWorks supports remote
command execution, remote login, and remote source-level debugging. VxWorks
also supports standard BSD socket calls, remote procedure calls, SNMP, remote file
access, boot parameter access from a host, and proxy ARP networks.

VxWorks provides standard BSD socket calls, which allow real-time VxWorks
tasks and other processes to communicate in any combination with each other over
the network. There are two sets of VxWorks socket calls: you can use sockets that
are source-compatible with BSD 4.3 UNIX, or you can use the zbuf socket interface
to streamline throughput. (The TCP subset of the zbuf interface is sometimes called
“zero-copy TCP.”)

Any task can open one or more sockets, to which other sockets can be connected.
Data written to one socket of a connected pair is read, transparently, from the other
socket. Because of this transparency, the two tasks do not necessarily know
whether they are communicating with another process or VxWorks task on the
same CPU or on another CPU, or with a process running under some other host

11

VxWorks 5.3.1
Programmer’s Guide

operating system. Similarly, tasks using the zbuf socket interface are not aware of
whether their communications partners are using standard sockets, or are also
using the zbuf interface.

For information on sockets, see 5.2.6 Sockets, p.251 and 5.2.7 The Zbuf Socket
Interface, p.264 and the reference entries for sockLib and zbufSockLib.

Remote Procedure Calls (RPC)

Originally designed by Sun Microsystems using the Sun ONC standard and
available in the public domain, Remote Procedure Call (RPC) is a protocol that
allows a process on one machine to call a procedure that is executed by another
process on another machine. Thus with RPC, a VxWorks task or host machine
process can invoke routines that are executed on other VxWorks or host machines,
in any combination. See the RPC documentation (publicly and commercially
available) and the reference entry for rpcLib.

Simple Network Management Protocol (WindNet SNMP Option)

The WindNet SNMPv1/v2c optional component allows VxWorks targets to be
managed and configured remotely through SNMP (the Simple Network
Management Protocol). Application developers can customize the SNMP
management information base to include information specific to each application
and environment.

For detailed information about WindNet SNMP, see the WindNet SNMPv1/v2c
VxWorks Component Release Supplement.

Remote File Access: NFS, RSH, FTP, TFTP

Remote file access across the network is also available. A program running on
VxWorks can use the host machine as a virtual file system. Files on any host
machine can be accessed through the network exactly as if they were local to the
VxWorks system. A program running under VxWorks does not need to know
where that file is, or how to access it. For example, /dk/file might be a file local to
the VxWorks system, while host:file might be a file located on another machine
entirely.

Conversely, VxWorks can allow host machines to use files maintained on VxWorks
just as transparently: programs running on the host need not know that the files
they use are maintained on the VxWorks real-time system.

VxWorks includes the Sun Microsystems standard Network File System (NFS).
VxWorks systems can run NFS clients, using files from other systems that export

12

1
Overview

files over NFS, or run NFS servers, exporting files to other systems. Alternatively,
VxWorks can use the following protocols to provide transparent remote file access:

= The Remote Shell protocol (RSH) can be used as a client, accessing files on
UNIX host systems running an RSH server.

= The File Transfer Protocol (FTP) provides remote access to VxWorks files from
other systems using FTP.

= TheTrivial File Transfer Protocol (TFTP) provides read/write capability to and
from a remote server.

See the reference entries for nfsLib, remLib, ftpLib, ftpdLib, tftpLib, and
tftpdLib, and the following sections: 3.7.4 Network File System (NFS) Devices, p.137,
5.3.4 Remote File Transfer Using TFTP, p.291, and 3.7.5 Non-NFS Network Devices,
p.138.

Boot Parameter Access from Host

BOOTP is a basic bootstrap protocol which allows a booting target to configure
itself dynamically by obtaining the required parameters from the host via the
network, instead of using information encoded in the target’s non-volatile RAM or
ROM. The actual transfer of the boot image is performed by a file transfer program.
BOOTP and TFTP are commonly used together for network booting.

Proxy ARP Networks

Proxy ARP provides transparent network access by using Address Resolution
Protocol (ARP) to make distinct networks appear as one logical network. The
proxy ARP scheme implemented in VxWorks provides an alternative to the use of
explicit subnets for access to the shared memory network.

With proxy ARP, nodes on different subnetworks are assigned addresses with the
same subnet number. Because they appear to reside on the same network, and
because they can communicate directly, they use ARP to resolve each other’s
hardware address. The gateway node that responds to ARP requests is called the
proxy server.

Virtual Memory (Including VxVMI Option)

Virtual memory support is provided for boards with Memory Management Units
(MMU). Bundled virtual memory support provides the ability to mark buffers
noncacheable. This is useful for multiprocessor environments where memory is
shared across processors or where DMA transfers take place. For information on

13

VxWorks 5.3.1
Programmer’s Guide

bundled virtual memory support, see 7. Virtual Memory Interface and the reference
entries for vmBaseLib and cacheL.ib.

Unbundled virtual memory support is available as the optional component
VxVMI. VxVMI provides the ability to make text segments and the exception
vector table read-only, and includes a set of routines for developers to manage their
own virtual memory contexts. For information on VxVMI, see 7. Virtual Memory
Interface and the reference entry for vmLib.

Shared-Memory Objects (VxMP Option)

The following shared-memory objects (available with VxWorks as the optional
component, VXMP) are used for communication and synchronization between
tasks on different CPUs:

= Shared semaphores can be used to synchronize tasks on different CPUs as well
as provide mutual exclusion to shared data structures.

= Shared message queues allow tasks on multiple processors to exchange
messages.

= Shared memory management is available to allocate common data buffers for
tasks on different processors.

For information on VXMP, see 6. Shared-Memory Objects and the reference entries
for smObjLib, smObjShow, semSmLib, msgQSmLib, smMemLib, and
smNameLib.

Target-Resident Tools

In the Tornado development system, a full suite of development tools reside and
execute on the host machine; see the Tornado User’s Guide for details. However, a
target-resident shell, symbol table, and module loader/unloader can be
configured into the VxWorks system if necessary, for example, to create a
dynamically configured run-time system.

For information on these target-resident tools, see 9. Target Shell and the reference
entries for shellLib, usrLib, dbgLib, loadLib, unldLib, and symLib.

14

1
Overview

C++ Development (including Wind Foundation Classes Option)

VxWorks supports C++ development. The GNU C++ compiler is shipped with
Tornado. The lostreams library provides support for formatted 1/0 in C++. The
standard Tornado interactive development tools such as the debugger, the shell,
and the incremental loader include C++ support.

In addition, you can order the Wind Foundation Classes optional component to
add the following libraries:

— VxWorks Wrapper Class library
— Tools.h++ library from Rogue Wave
— Booch Components library from Rogue Wave

For more information on these libraries, see 10. C++ Development.

Utility Libraries

VxWorks supplies many subroutines of general utility to application developers.
These routines are organized as a set of subroutine libraries, which are described
below. We urge you to use these libraries wherever possible. Using library utilities
reduces both development time and memory requirements for the application.

Interrupt Handling Support

VxWorks supplies routines for handling hardware interrupts and software traps
without having to resort to assembly language coding. Routines are provided to
connect C routines to hardware interrupt vectors, and to manipulate the processor
interrupt level.

For information on interrupt handling, see the intLib and intArchLib reference
entries. Also see 2. Basic OS for information about the context where interrupt-
level code runs and for special restrictions that apply to interrupt service routines.

Watchdog Timers

A watchdog facility allows callers to schedule execution of their own routines after
specified time delays. As soon as the specified number of ticks have elapsed, the
specified “timeout” routine is called at the interrupt level of the system clock,
unless the watchdog is canceled first. This mechanism is entirely different from the
kernel’s task delay facility. For information on watchdog timers, see 2.6 Watchdog
Timers, p.99 and the reference entry for wdLib.

15

VxWorks 5.3.1
Programmer’s Guide

Message Logging

A simple message logging facility allows applications to send error or status
messages to a logging task, which then formats and outputs the messages to a
system-wide logging device (such as the system console, disk, or accessible
memory). The message logging facility can be used from either interrupt level or
task level. For information on this facility, see 3.5.3 Message Logging, p.122 and the
reference entry for logLib.

Memory Allocation

VxWorks supplies a memory management facility useful for dynamically
allocating, freeing, and reallocating blocks of memory from a memory pool. Blocks
of arbitrary size can be allocated, and you can specify the size of the memory pool.
This memory scheme is built on a much more general mechanism that allows
VxWorks to manage several separate memory pools.

String Formatting and Scanning

VxWorks includes a complete set of ANSI C library string formatting and scanning
subroutines that implement printf()/scanf() format-driven encoding and

decoding and associated routines. See the reference entries for fioLib and
ansiStdio.

Linear and Ring Buffer Manipulations

The library bLib contains buffer manipulation routines such as copying, filling,
comparing, and so on, that have been optimized for speed. The library rngLib
provides a set of general ring buffer routines that manage first-in-first-out (FIFO)
circular buffers. Additionally, these ring buffers have the property that a single
writer and a single reader can access a ring buffer “simultaneously” without being
required to interlock their accesses explicitly.

Linked-List Manipulations

The library IstLib contains a complete set of routines for creating and
manipulating doubly-linked lists.

ANSI C Libraries

VxWorks provides all C libraries specified by ANSI X3.159-1989. The ANSI C
specification includes the following libraries: assert, ctype, errno, float, limits,
locale, math, setjmp, signal, stdarg, stdio, stddef, stdlib, string, and time.

16

1
Overview

The header files float.h, limits.h, errno.h, and stddef.h provide ANSI-specified
definitions and declarations. The more commonly used libraries are described in
the following reference entries:

ansiCtype routines for character manipulation.
ansiMath trigonometric, exponential, and logarithmic routines.

ansiSetjmp routines for implementing a non-local goto.

ansiStdarg routines for traversing a variable-length argument list.
ansiStdio routines for manipulating streams for input/output.
ansiStdlib avariety of routines, including those for type translation, memory

allocation, and random number generation.

sigLib signal-manipulation routines.

Performance Evaluation

To understand and optimize the performance of a real-time system, it can be useful
to time some of the VxWorks or application routines. VxWorks provides various
timing facilities to help with this task.

The VxWorks execution timer can time any subroutine or group of subroutines.
Because the system clock is too slow to provide the resolution necessary to time
especially fast routines, the timer can also repeatedly execute a group of routines
until the time of a single iteration is known to a reasonable accuracy. For
information on the execution timer, see the timexLib reference entry.

VxWorks also provides the spy utility, which provides CPU utilization information
for each task: the CPU time consumed, the time spent at interrupt level, and the
amount of idle time. Time is displayed in ticks and in percentages. For information
on this utility, see the spyLib reference entry.2

Even more powerful monitoring of the VxWorks system is available using the
optional product WindView; for more information, see the WindView User’s Guide.

2. You can also use this utility through the Tornado browser; see the Tornado User’s Guide:
Browser for details.

17

VxWorks 5.3.1
Programmer’s Guide

Target Agent

The target agent follows the WDB (Wind DeBug) protocol, allowing a VxWorks
target to be connected to the Tornado development tools. In the target agent’s
default configuration, shown in Figure 1-1, the agent runs as the VxWorks task
tWdbTask. The Tornado target server sends debugging requests to the target
agent. The debugging requests often result in the target agent controlling or
manipulating other tasks in the system.

Figure 1-1 Interaction Between Target Server and Target Agent

HOST TARGET

VxWorks OS

— tWdbTask

Communications (Target Agent)
Driver /\
Target Server tUserl tUser2

NETWORK (Ethernet, SLIP, etc.)

By default, the target server and agent communicate using the network. However,
you can use alternative communication paths. For more information on the default
configuration or alternative configurations of the target agent, see the Tornado
User’s Guide: Getting Started. For information on the Tornado target server, see the
Tornado User’s Guide: Overview.

Board Support Packages (BSPs)

Two target-specific libraries, sysLib and sysAL.ib, are included with each port of
VxWorks. These libraries are the heart of VxWorks portability; they provide an
identical software interface to the hardware functions of all boards. They include
facilities for hardware initialization, interrupt handling and generation, hardware
clock and timer management, mapping of local and bus memory spaces, memory
sizing, and so on.

18

1
Overview

Each BSP also includes a boot ROM or other boot mechanism. Many of these
import the run-time image from the development host. For information on boot
ROMs and other booting mechanisms see the Tornado User’s Guide: Getting Started.

For information on target-specific libraries, see 8.2 The Board Support Package (BSP),
p.427 and the target-specific reference entries for your board type.

VxWorks Simulator (VxSim Option)

VxSim, the VxWorks Simulator, is a UNIX program that simulates a VxWorks
target for use as a prototyping and testing environment. This optional product is
available for UNIX environments only.

VxSim is essentially a port of VxWorks to UNIX. In most regards, its capabilities
are identical to a true VxWorks system running on remote target hardware. You
can link in an application and rebuild the VxWorks image exactly the same way as
in any other VxWorks cross-development environment. All Tornado development
tools can be used with VxSim.

The difference between VxSim and a remote VxWorks target environment is that
in VxSim, the image executes on the UNIX machine itself as a UNIX process. There
is no emulation of instructions, because the code is in the host’s own CPU
architecture. VxSim includes a User Level IP (ULIP) driver, allowing it to obtain an
Internet address and communicate with the host (or other nodes on the network)
using the VxWorks netwaorking tools.

Because target hardware interaction is not possible, device-driver development
may not be suitable for simulation. However, the VxWorks scheduler is
implemented in the VxSim UNIX process, maintaining true tasking interaction
with respect to priorities and preemption. This means that any application that is
written in a portable style and with minimal hardware interaction should be
portable between VxSim and VxWorks.

For more information on VxSim, see the VxSim User’s Guide.

19

VxWorks 5.3.1
Programmer’s Guide

1.5 Customer Services

Training

A full range of support services is available from Wind River Systems to ensure
that you have the opportunity to make optimal use of the extensive features of
VXWorks.

This section summarizes the major services available. For more detailed
information, consult the Tornado User’s Guide: Customer Service.

In the United States, Wind River Systems holds regularly scheduled classes on
Tornado and VxWorks. Customers can also arrange to have Tornado classes held
at their facility. The easiest way to learn about WRS training services, schedules,
and prices is through the World Wide Web. Point your site’s Web browser at the
following URL:

http:/iwww.wrs.com/trainmain.html

You can also receive the training schedule from an automatic e-mail server. Send
e-mail with the following text in the header:

To: server@wrs.com
Subject: training

You can contact the Training Department at:

Phone: 510/748-4100
800/545-WIND

Fax: 510/814-2010

E-mail; training@wrs.com

Outside of the United States, call your local distributor or nearest Wind River
Systems office for training information. See the back cover of this manual for a list
of Wind River Systems offices.

Customer Support

Direct contact with a staff of software engineers experienced in VXWorks is
available through the Wind River Systems Customer Support program. For
information on how to contact WRS Customer Support, see the copyright page at
the front of this manual.

20

1
Overview

1.6 Documentation Conventions

Typographical Conventions

VxWorks documentation uses the conventions shown in Table 1-1 to differentiate
various elements. Parentheses are always included to indicate a subroutine name,

as in printf().

Table 1-1 Font Usage for Special Terms

Term

Example

files, pathnames

libraries, drivers

host tools

subroutines

boot commands

code display

keyboard input

display output
user-supplied parameters
constants

C keywords, cpp directives
named key on keyboard
control characters

lower-case acronyms

/etc/hosts
memLib, nfsDrv
more, chkdsk
semTake()

p

main ();

make CPU=MC68040 ...
value =0

name
INCLUDE_NFS
#define
RETURN
CTRL+C

fd

Cross-References

Cross-references in this guide to a reference entry for a tool or module refer to an
entry in the VxWorks Reference Manual (for target libraries or subroutines) or to the
reference appendix in the Tornado User’s Guide (for host tools). These references are
also provided in the Tornado Online Manuals. For more information about how to
access online documentation, see the Tornado User’s Guide: Documentation Guide.

Other references from one book to another are always at the chapter level, and take
the form Book Title: Chapter Name.

21

VxWorks 5.3.1
Programmer’s Guide

Pathnames

The top-level Tornado directory structure includes three major directories (see the
Tornado User’s Guide: Directories and Files). Because all VxWorks files reside in the
target directory, this manual uses relative pathnames starting below that directory.
For example, if you install Tornado in /usr/wind, the full pathname for the file
shown as config/all/configAll.h is /usr/wind/target/config/all/configAll.h.

A NOTE: In this manual, forward slashes are used as pathname delimiters for both
UNIX and Windows filenames.

22

2.1

2.2

2.3

Basic OS

([ge o [UTox 110] o TR TR PP 29
Wind Features and POSIX FEAUINES ...iicvviiiiiiiiiiieiiesiieesee e e snieesnesnsesseneans 29
TASKS weettieiee ettt st ettt sttt b b e e e aa e b e ae b nres 30
2.3 1 MUIITASKING ..oocveiieiccce e 30
2.3.2 Task State TranSition ... 30
2.3.3 Wind Task SChedulingccccccceiiiiiiiiieieese e 32
Preemptive Priority Schedulingccccoooiiinniice 32
Round-Robin Schedulingcccccov i 33
Preemption LOCKS ... 34
2.34 Tasking Control ..o 35
Task Creation and ACtIVAtiON ... 35
Task Names and IDS ..o 35
TaSK OPLIONS ...oouiiiiieiiirieitee e 36
Task INFOrMAtioN ..o 37
Task Deletion and Deletion Safetycccccecvveiiiciii e 38
TasK CONIOL ..o s 39
2.3.5 Tasking EXIENSIONSccccccviiieiiiicic e 40
2.3.6 POSIX Scheduling INterfacecccocovviieieiieie e 41
Differences Between POSIX and Wind Scheduling 41
Getting and Setting POSIX Task Prioritiesc.cccoovveviviiieninennnn, 43
Getting and Displaying the Current Scheduling Policy 44

23

2.4

VxWorks 5.3.1
Programmer’s Guide

Getting Scheduling Parameters: Priority Limits and Time Slice 45

2.3.7 Task Error Status: BrTN0cccceoeierieieieeceese e 45
Layered Definitions Of €rrNo ..o 46
A Separate errno Value for Each Taskcccccvviiiiiiiiiciee, 46
Error Return CONVENTIONccooiiiiiiiieiicre e 46
Assignment of Error Status Valuescccccoevevieviviecc e, 47
2.3.8 Task Exception Handlingccccocooeiiiiiiiniiie e 48
2.3.9 Shared Code and REENIIANCYcovieiiiiiniieicse s 48
Dynamic Stack Variables ... 49
Guarded Global and Static Variablesccccooivinininiiencicne, 50
Task Variables ... 50
Multiple Tasks with the Same Main Routinecc.ccoceviienneee 51
2.3.10 VXWOrKS System TasKScccccvevevieiieieiiese e e 52
The R0oot Task: tUSIROOLccoiiiiiiiiiiiciee e 52
The Logging Task: tLOgTaskcccccceviviiieiiiieiiccse e 53
The Exception Task: tEXCTASKccccoeviiiiiniiiiiiii e 53
The Network Task: tNetTask ... 53
The Target Agent Task: tWdbTaskcccccoveiviiviiciieccees 53
Tasks for Optional COmpPONENts ..o 53
Intertask COMMUNICALIONS .vviivieiieeiiieiie et be e aeessee b 54
2.4.1 Shared Data SIrUCLUIEScccceiieiiiriiieiiieeeee s 55
2.4.2 Mutual EXCIUSION ...t 55
Interrupt Locks and LatenCycccccoeiiiiininieiinene e 56
Preemptive Locks and LatencCy ..o 56
2.4.3 SEMAPRNOIES ..o s 57
Semaphore CoNntrol ... 57
Binary SEMAaPNOrescocooiiiiee e 58
Mutual-Exclusion Semaphores ... 62
Counting SEMAPRNOIESc.ciiiiiiie s 65
Special Semaphore OPLIONScccviiiiininiienee e 66
POSIX SEMAPNOFES ... 67
244 MeSSAgE QUEUESoovvieiiiiiiesie st seeste e e te et beesaeesbe e sraesnbe et 74
WiNd Message QUEUEScoueiveieieiiieiieiese et 75
POSIX MeSsage QUEUEScccevuiriiieiiieiiie e enieesinessieeseessiaessaesneens 77

24

2.5

2.6

2.7

2.8

2

Basic OS
Comparison of POSIX and Wind Message QUEUEScccoc..... 86
Displaying Message Queue ALtributescccooveveieiiiccinnn 87
Servers and Clients with Message QUEUESc.ccccecvevviierieennnn, 87
245 PIPES ittt 88
2.4.6 Network Intertask Communicationcccocooererineicieieee 89
SOCKELS .ttt et 89
Remote Procedure Calls (RPC) ...c.ccoooe e 90
247 SIQNAIS oo s 90
Basic Signal ROULINESccccoeiiie e 91
POSIX Queued Signalscccccoviieeiieiie e 92
Signal Configuration ... 93
INEITUPL SEIVICE COUE .oiiiiiiiieiie sttt 93
251 Connecting Application Code to Interruptscccceoeviieininnnn 94
252 INTErrupt STACKccooiiiiiiieisee e 95
2.5.3 Special Limitations of ISRSccccooeiininiiiiinee e 95
2.5.4 Exceptions at Interrupt Level ... 97
255 Reserving High Interrupt LeVelS ... 98
2.5.6 Additional Restrictions for ISRs at High Interrupt Levels 98
2.5.7 Interrupt-to-Task CommMUNICAtIONccccooiviiiiiiiice e 98
WatChAOg TIMEIS .iiviiiiieitie ittt a e be e b e e beenereans 99
POSIX CloCkS @nd TIMEIS ..iiuieiieiiieiie st sire sttt siee e sae st sane e 100
POSIX Memory-Locking INEIface ccccceeiiieiiiiinii st 101

25

VxWorks 5.3.1

Programmer’s Guide

List of Tables

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 2-10
Table 2-11
Table 2-12
Table 2-13
Table 2-14
Table 2-15
Table 2-16
Table 2-17
Table 2-18
Table 2-19
Table 2-20
Table 2-21
Table 2-22
Table 2-23
Table 2-24
Table 2-25

List of Figures

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10

26

Task State TranSitioNS ... 31
Task Scheduler Control ROULINEScc.ccocvvivinineieenns 32
Task Creation ROULINEScccvviiiiiinieiine e 35
Task Name and ID ROULINEScccovvviiniinenenene e 36
TasK OPLIONS ...ocveiiiicie e 37
Task Option ROULINEScoooviieiiieicinesec e 37
Task Information ROULINESccccoeviveiinine e 37
Task-Deletion ROULINEScccoiieiiinieiice e 38
Task Control ROULINEScccoveiiiiiiireicere e 39
Task Create, Switch, and Delete HOOKScccccocevennnns 40
Routines that Can Be Called by Task Switch Hooks 41
POSIX Scheduling Calls ... 42
Semaphore Control ROULINES ..., 58
Counting Semaphore Exampleccccoovviinineneneiennns 65
POSIX Semaphore ROULINESccccovvvvieniniiie e, 68
Possible Outcomes of Calling sem_open()cccccerueuene. 71
Wind Message Queue Controlccccocveeviennieneneene. 75
POSIX Message Queue ROULINEScccocevvveieenieiiereennen. 77
Message Queue Feature Comparisoncccocveevreenes 86
Basic Signal Calls (BSD and POSIX 1003.1b) 91
POSIX 1003.1b Queued Signal Callsccccccovevvricirnnnnne. 93
INtErrupt ROUTINES ..o 94
Routines that Can Be Called by Interrupt Service Routines 96
Watchdog Timer CallScccoiiiiiiiiieiieeceees 99
POSIX Memory Management Callsccccceovvniininnne. 102
Task State Transitionscccvvieveieneinensese e 31
Priority Preemption ... 33
Round-Robin Schedulingc.cccocvvivviiivini e, 34
Shared COAEccooviriiriiiee e 49
Stack Variables and Shared Codecccoceerviiiinieninen, 50
Task Variables and Context Switches ..o, 51
Multiple Tasks Utilizing Same Codecccceevreveirennene. 52
Shared Data StrUCtUIEScccocevveriienieeneesecsee e 55
Taking a SemMaphore ..o 59
Giving a SemMaphOore ... 59

Figure 2-11
Figure 2-12
Figure 2-13
Figure 2-14
Figure 2-15
Figure 2-16

List of Examples

Example 2-1
Example 2-2
Example 2-3
Example 2-4
Example 2-5
Example 2-6
Example 2-7
Example 2-8
Example 2-9
Example 2-10
Example 2-11
Example 2-12
Example 2-13

2

Basic OS
Priority INVErsioN ... ieeie i 63
Priority INheritance ..o 63
Task QUEUE TYPES ...oouvieiiiiiinie et 67

Full Duplex Communication Using Message Queues ... 74
Client-Server Communications Using Message Queues 88

Routine Built by intConnect()ccoooevveievveiciecce e, 95
Getting and Setting POSIX Task Prioritiescccceeve.ns 43
Getting POSIX Scheduling Policycccccocviiiniiiencnen. 44
Getting the POSIX Round-Robin Time Slice 45
Using Semaphores for Task Synchronization 61
Recursive Use of a Mutual-Exclusion Semaphore 64
POSIX Unnamed SemMaphoresccoeeveineinennennnenns 69
POSIX Named Semaphores ... 72
Wind Message QUEUESccoeireireiieiese et 76
POSIX Message QUEUEScceoereerierienieeienieeesee e 78
Notifying a Task that a Message Queue is Waiting 81
Setting and Getting Message Queue Attributes 85
Watchdog TIMErSccooiiriiriineee e 100
POSIX TIMEIS .o 101

27

2
Basic OS

2.1 Introduction

Modern real-time systems are based on the complementary concepts of
multitasking and intertask communications. A multitasking environment allows a
real-time application to be constructed as a set of independent tasks, each with its
own thread of execution and set of system resources. The intertask communication
facilities allow these tasks to synchronize and communicate in order to coordinate
their activity. In VxWorks, the intertask communication facilities range from fast
semaphores to message queues and pipes to network-transparent sockets.

Another key facility in real-time systems is hardware interrupt handling, because
interrupts are the usual mechanism to inform a system of external events. To get
the fastest possible response to interrupts, interrupt service routines (ISRs) in
VxWorks run in a special context of their own, outside of any task’s context.

This chapter discusses the multitasking kernel, tasking facilities, intertask
communication, and interrupt handling facilities, which are at the heart of the
VxWorks run-time environment.

2.2 Wind Features and POSIX Features

The POSIX standard for real-time extensions (1003.1b) specifies a set of interfaces
to kernel facilities. To improve application portability, the VxWorks kernel, wind,
includes both POSIX interfaces and interfaces designed specifically for VxWorks.

This manual (especially in this chapter) uses the qualifier “Wind” to identify
facilities designed expressly for use with the VxWorks wind kernel. For example,
you can find a discussion of Wind semaphores contrasted to POSIX semaphores in
Comparison of POSIX and Wind Semaphores, p.68.

29

2.3 Tasks

VxWorks 5.3.1
Programmer’s Guide

Itis often essential to organize applications into independent, though cooperating,
programs. Each of these independent programs, while executing, is called a task.
In VxWorks, tasks have immediate, shared access to most system resources, while
also maintaining enough separate context to maintain individual threads of
control.

2.3.1 Multitasking

Multitasking provides the fundamental mechanism for an application to control
and react to multiple, discrete real-world events. The VxWorks real-time kernel,
wind, provides the basic multitasking environment. Multitasking creates the
appearance of many threads of execution running concurrently when, in fact, the
kernel interleaves their execution on the basis of a scheduling algorithm. Each
apparently independent program is called a task. Each task has its own context,
which is the CPU environment and system resources that the task sees each time it
is scheduled to run by the kernel. On a context switch, a task’s context is saved in
the task control block (TCB). A task’s context includes:

— athread of execution, that is, the task’s program counter
— the CPU registers and (optionally) floating-point registers
— astack for dynamic variables and function calls

— 1/0 assignments for standard input, output, and error

— adelay timer

— atimeslice timer

— kernel control structures

— signal handlers

— debugging and performance monitoring values

In VxWorks, one important resource that is not part of a task’s context is memory
address space: all code executes in a single common address space. Giving each
task its own memory space requires virtual-to-physical memory mapping, which
is available only with the optional product VxVMI; for more information, see

7. Virtual Memory Interface.

2.3.2 Task State Transition

The kernel maintains the current state of each task in the system. A task changes
from one state to another as the result of kernel function calls made by the

30

Figure 2-1

Table 2-1

Task State Transitions

2
Basic OS

The highest-priority ready task is executing.

pended

ready —>
ready - »
ready —>
pended - »
pended - »
delayed - »
delayed - »
suspended - »
suspended - »
suspended - »

Task State Transitions

suspended

delayed

taskiInit()

pended
delayed
suspended
ready
suspended
ready
suspended
ready
pended
delayed

semTake() /7 msgQReceive()
taskDelay()

taskSuspend()

semGive() / msgQSend()
taskSuspend()

expired delay

taskSuspend()

taskResume() / taskActivate()
taskResume()

taskResume()

State Symbol

Description

READY
PEND
DELAY
SUSPEND

DELAY + S
PEND + S
PEND+ T
PEND+S+T
state + |

The state of a task that is not waiting for any resource other than the CPU.

The state of a task that is blocked due to the unavailability of some resource.

The state of a task that is asleep for some duration.

The state of a task that is unavailable for execution. This state is used primarily for
debugging. Suspension does not inhibit state transition, only task execution. Thus
pended-suspended tasks can still unblock and delayed-suspended tasks can still awaken.

The state of a task that is both delayed and suspended.
The state of a task that is both pended and suspended.

The state of a task that is pended with a timeout value.
The state of a task that is both pended with a timeout value and suspended.
The state of task specified by state, plus an inherited priority.

31

VxWorks 5.3.1
Programmer’s Guide

application. When created, tasks enter the suspended state. Activation is necessary
for a created task to enter the ready state. The activation phase is extremely fast,
enabling applications to pre-create tasks and activate them in a timely manner. An
alternative is the spawning primitive, which allows a task to be created and
activated with a single function. Tasks can be deleted from any state.

The wind kernel states are shown in the state transition diagram in Figure 2-1, and
a summary of the corresponding state symbols you will see when working with
Tornado development tools is shown in Table 2-1.

2.3.3 Wind Task Scheduling

Table 2-2

Multitasking requires a scheduling algorithm to allocate the CPU to ready tasks.
Priority-based preemptive scheduling is the default algorithm in wind, but you can
select round-robin scheduling for your applications as well. The routines listed in
Table 2-2 control task scheduling.

Task Scheduler Control Routines

Call Description

kernelTimeSlice() Control round-robin scheduling.
taskPrioritySet() Change the priority of a task.
taskLock() Disable task rescheduling.
taskUnlock() Enable task rescheduling.

Preemptive Priority Scheduling

With a preemptive priority-based scheduler, each task has a priority and the kernel
ensures that the CPU is allocated to the highest priority task that is ready to run.
This scheduling method is preemptive in that if a task that has higher priority than
the current task becomes ready to run, the kernel immediately saves the current
task’s context and switches to the context of the higher priority task. In Figure 2-2,
task t1 is preempted by higher-priority task t2, which in turn is preempted by t3.
When t3 completes, t2 continues executing. When t2 completes execution, t1
continues executing.

The wind kernel has 256 priority levels, numbered 0 through 255. Priority 0 is the
highest and priority 255 is the lowest. Tasks are assigned a priority when created;

32

Figure 2-2

2
Basic OS

Priority Preemption

HIGH T t3

I} /

5 [&2]

&

%
Low o
time
KEY: 7 = preemption = task completion

however, while executing, a task can change its priority using taskPrioritySet().
The ability to change task priorities dynamically allows applications to track
precedence changes in the real world.

Round-Robin Scheduling

Preemptive priority scheduling can be augmented with round-robin scheduling. A
round-robin scheduling algorithm attempts to share the CPU fairly among all
ready tasks of the same priority. Without round-robin scheduling, when multiple
tasks of equal priority must share the processor, a single task can usurp the
processor by never blocking, thus never giving other equal-priority tasks a chance
to run.

Round-robin scheduling achieves fair allocation of the CPU to tasks of the same
priority by an approach known as time slicing. Each task of a group of tasks
executes for a defined interval, or time slice; then another task executes for an equal
interval, in rotation. The allocation is fair in that no task of a priority group gets a
second slice of time before the other tasks of a group are given a slice.

Round-robin scheduling can be enabled with the routine kernelTimeSlice(), which
takes a parameter for a time slice, or interval. This interval is the amount of time
each task is allowed to run before relinquishing the processor to another equal-
priority task.

More precisely, a run-time counter is kept for each task and incremented on every
clock tick. When the specified time-slice interval is completed, the counter is
cleared and the task is placed at the tail of the queue of tasks at its priority. New

33

VxWorks 5.3.1
Programmer’s Guide

tasks joining a priority group are placed at the tail of the group with a run-time
counter initialized to zero.

If a task is preempted by a higher priority task during its interval, its run-time
count is saved and then restored when the task is again eligible for execution.
Figure 2-3 shows round-robin scheduling for three tasks of the same priority: t1, t2,
and t3. Task t2 is preempted by a higher priority task t4 but resumes at the count
where it left off when t4 is finished.

Figure 2-3 Round-Robin Scheduling

u
7
(4 [e [& [4 [&]

time

HIGH

time slice

priority ———>

LOW

KEY: ; = preemption | = task completion

Preemption Locks

The wind scheduler can be explicitly disabled and enabled on a per-task basis with
the routines taskLock() and taskUnlock(). When a task disables the scheduler by
calling taskLock(), no priority-based preemption can take place while that task is
running.

However, if the task explicitly blocks or suspends, the scheduler selects the next
highest-priority eligible task to execute. When the preemption-locked task
unblocks and begins running again, preemption is again disabled.

Note that preemption locks prevent task context switching but do not lock out
interrupt handling.

Preemption locks can be used to achieve mutual exclusion; however, keep the
duration of preemption locking to a minimum. For more information, see
2.4.2 Mutual Exclusion, p.55.

34

2
Basic OS

2.3.4 Tasking Control

The following sections give an overview of the basic VxWorks tasking routines,
which are found in the VxWorks library taskLib. These routines provide the means
for task creation, control, and information. See the reference entry for taskLib for
further discussion. For interactive use, you can control VxWorks tasks from the
host-resident shell; see the Tornado User’s Guide: Shell.

Task Creation and Activation

Table 2-3

The routines listed in Table 2-3 are used to create tasks.

Task Creation Routines

Call Description

taskSpawn() Spawn (create and activate) a new task.
tasklnit() Initialize a new task.

taskActivate() Activate an initialized task.

The arguments to taskSpawn() are the new task’s hame (an ASCII string), priority,
an “options” word, stack size, main routine address, and 10 arguments to be
passed to the main routine as startup parameters:

id = taskSpawn (name, priority, options, stacksize, main, argl, ...argl0);

The taskSpawn() routine creates the new task context, which includes allocating
the stack and setting up the task environment to call the main routine (an ordinary
subroutine) with the specified arguments. The new task begins execution at the
entry to the specified routine.

The taskSpawn() routine embodies the lower-level steps of allocation,
initialization, and activation. The initialization and activation functions are
provided by the routines tasklnit() and taskActivate(); however, we recommend
you use these routines only when you need greater control over allocation or
activation.

Task Names and IDs

When a task is spawned, you can specify an ASCII string of any length to be the
task name. VxWorks returns a task 1D, which is a 4-byte handle to the task’s data

35

A\

Table 2-4

Task Options

VxWorks 5.3.1
Programmer’s Guide

structures. Most VxWorks task routines take a task ID as the argument specifying
a task. VxWorks uses a convention that a task ID of 0 (zero) always implies the
calling task.

A task name should not conflict with any existing task name. Furthermore, to use
the Tornado development tools to their best advantage, task names should not
conflict with globally visible routine or variable names. To avoid name conflicts,
VxWorks uses a convention of prefixing all task names started from the target with
the letter t and task names started from the host with the letter u.

You may not want to name some or all of your application’s tasks. If a NULL
pointer is supplied for the name argument of taskSpawn(), then VxWorks assigns
a unique name. The name is of the form tN, where N is a decimal integer that
increases by one for each unnamed task that is spawned.

NOTE: In the shell, task names are resolved to their corresponding task IDs to
simplify interaction with existing tasks; see the Tornado User’s Guide: Shell.

The taskLib routines listed in Table 2-4 manage task IDs and names.

Task Name and ID Routines

Call Description

taskName() Get the task name associated with a task ID.
taskNameTold() Look up the task ID associated with a task name.
taskldSelf() Get the calling task’s ID.

taskldVerify() Verify the existence of a specified task.

When a task is spawned, an option parameter is specified by performing a logical
OR operation on the desired options, listed in the following table. Note that
VX_FP_TASK must be specified if the task performs any floating-point operations.

To create a task that includes floating-point operations, use:

tid = taskSpawn ("tMyTask", 90, VX_FP_TASK, 20000, myFunc, 2387, 0, 0,
0,0,0,0,0,0,0);

Task options can also be examined and altered after a task is spawned by means of
the routines listed in Table 2-6. Currently, only the VX_UNBREAKABLE option can
be altered.

36

Table 2-5

Table 2-6

Task Information

Table 2-7

2

Basic OS
Task Options
Name Hex Value Description
VX_FP_TASK 0x8 Execute with the floating-point coprocessor.

VX_NO_STACK_FILL 0x100 Do not fill stack with Oxee.
VX _PRIVATE_ENV 0x80 Execute task with a private environment.
VX_UNBREAKABLE 0x2 Disable breakpoints for the task.

Task Option Routines

Call Description
taskOptionsGet() Examine task options.
taskOptionsSet() Set task options.

The routines listed in Table 2-7 get information about a task by taking a snapshot
of a task’s context when called. The state of a task is dynamic, and the information
may not be current unless the task is known to be dormant (that is, suspended).

Task Information Routines

Call Description

taskldListGet() Fill an array with the IDs of all active tasks.
taskInfoGet() Get information about a task.
taskPriorityGet() Examine the priority of a task.
taskRegsGet() Examine a task’s registers.

taskRegsSet() Set a task’s registers.

tasklsSuspended() Check if a task is suspended.
tasklIsReady() Check if a task is ready to run.

taskTch() Get a pointer to task’s control block.

37

VxWorks 5.3.1
Programmer’s Guide

Task Deletion and Deletion Safety

A

Table 2-8

Tasks can be dynamically deleted from the system. VxWorks includes the routines
listed in Table 2-8 to delete tasks and protect tasks from unexpected deletion.

WARNING: Make sure that tasks are not deleted at inappropriate times: a task
must release all shared resources it holds before an application deletes the task.

Task-Deletion Routines

Call Description

exit() Terminate the calling task and free memory (task stacks
and task control blocks only).”

taskDelete() Terminate a specified task and free memory (task stacks
and task control blocks only).”

taskSafe() Protect the calling task from deletion.

taskUnsafe() Undo a taskSafe() (make the calling task available for
deletion).

* Memory that is allocated by the task during its execution is not freed when the
task is terminated.

Tasks implicitly call exit() if the entry routine specified during task creation
returns. Alternatively, a task can explicitly call exit() at any point to kill itself. A
task can kill another task by calling taskDelete().

When a task is deleted, no other task is notified of this deletion. The routines
taskSafe() and taskUnsafe() address problems that stem from unexpected
deletion of tasks. The routine taskSafe() protects a task from deletion by other
tasks. This protection is often needed when a task executes in a critical region or
engages a critical resource.

For example, a task might take a semaphore for exclusive access to some data
structure. While executing inside the critical region, the task might be deleted by
another task. Because the task is unable to complete the critical region, the data
structure might be left in a corrupt or inconsistent state. Furthermore, because the
semaphore can never be released by the task, the critical resource is now
unavailable for use by any other task and is essentially frozen.

Using taskSafe() to protect the task that took the semaphore prevents such an
outcome. Any task that tries to delete a task protected with taskSafe() is blocked.
When finished with its critical resource, the protected task can make itself available

38

Task Control

Table 2-9

2
Basic OS

for deletion by calling taskUnsafe(), which readies any deleting task. To support
nested deletion-safe regions, a count is kept of the number of times taskSafe() and
taskUnsafe() are called. Deletion is allowed only when the count is zero, that is,
there are as many “unsafes” as “safes.” Protection operates only on the calling task.
A task cannot make another task safe or unsafe from deletion.

The following code fragment shows how to use taskSafe() and taskUnsafe() to
protect a critical region of code:

taskSafe ();
semTake (semld, WAIT_FOREVER); /* Block until semaphore available */

critical region

éemGive (semild); /* Release semaphore */
taskUnsafe ();

Deletion safety is often coupled closely with mutual exclusion, as in this example.
For convenience and efficiency, a special kind of semaphore, the mutual-exclusion
semaphore, offers an option for deletion safety. For more information, see Mutual-
Exclusion Semaphores, p.62.

The routines listed in Table 2-9 provide direct control over a task’s execution.

Task Control Routines

Call Description

taskSuspend() Suspend a task.

taskResume() Resume a task.

taskRestart() Restart a task.

taskDelay() Delay a task; delay units are ticks.
nanosleep() Delay a task; delay units are nanoseconds.

VxWorks debugging facilities require routines for suspending and resuming a
task. They are used to freeze a task’s state for examination.

Tasks may require restarting during execution in response to some catastrophic
error. The restart mechanism, taskRestart(), recreates a task with the original
creation arguments. The Tornado shell also uses this mechanism to restart itself in

response to a task-abort request; for information, see the Tornado User’s Guide: Shell.

39

VxWorks 5.3.1
Programmer’s Guide

Delay operations provide a simple mechanism for a task to sleep for a fixed
duration. Task delays are often used for polling applications. For example, to delay
a task for half a second without making assumptions about the clock rate, call:

taskDelay (sysClkRateGet () / 2);

The routine sysClkRateGet() returns the speed of the system clock in ticks per
second. Instead of taskDelay(), you can use the POSIX routine nanosleep() to
specify a delay directly in time units. Only the units are different; the resolution of
both delay routines is the same, and depends on the system clock. For details, see
2.7 POSIX Clocks and Timers, p.100.

As a side effect, taskDelay() moves the calling task to the end of the ready queue
for tasks of the same priority. In particular, you can yield the CPU to any other
tasks of the same priority by “delaying” for zero clock ticks:

taskDelay (NO_WAIT); /* allow other tasks of same priority to run */

A “delay” of zero duration is only possible with taskDelay(); nanosleep()
considers it an error.

2.3.5 Tasking Extensions

Table 2-10

To allow additional task-related facilities to be added to the system without
modifying the kernel, wind provides task create, switch, and delete hooks, which allow
additional routines to be invoked whenever a task is created, a task context switch
occurs, or a task is deleted. There are spare fields in the task control block (TCB)
available for application extension of a task’s context. These hook routines are
listed in Table 2-10; for more information, see the reference entry for taskHookL.ib.

Task Create, Switch, and Delete Hooks

Call Description

taskCreateHookAdd() Add a routine to be called at every task create.
taskCreateHookDelete() Delete a previously added task create routine.

taskSwitchHookAdd() Add a routine to be called at every task switch.
taskSwitchHookDelete() Delete a previously added task switch routine.
taskDeleteHookAdd() Add a routine to be called at every task delete.
taskDeleteHookDelete() Delete a previously added task delete routine.

40

2
Basic OS

User-installed switch hooks are called within the kernel context. Thus, switch
hooks do not have access to all VxWorks facilities. Table 2-11 summarizes the
routines that can be called from a task switch hook; in general, any routine that
does not involve the kernel can be called.

Table 2-11 Routines that Can Be Called by Task Switch Hooks

Library Routines

bLib All routines

fppArchLib fppSave(), fppRestore()

intLib intContext(), intCount(), intVecSet(), intVecGet(), intLock(), intUnlock()
IstLib All routines except IstFree()

mathALib All are callable if fppSave()/fppRestore() are used

rngLib All routines except rngCreate() and roundlet()

taskLib taskldVerify(), taskldDefault(), taskisReady(), tasklsSuspended(),
taskTch()

vxLib vxTas()

2.3.6 POSIX Scheduling Interface

The POSIX 1003.1b scheduling routines, provided by schedPxLib, are shown in
Table 2-12. These routines let you use a portable interface to get and set task
priority, get the scheduling policy, get the maximum and minimum priority for
tasks, and if round-robin scheduling is in effect, get the length of a time slice. To
understand how to use the routines in this alternative interface, be aware of the
minor differences between the POSIX and Wind methods of scheduling.

Differences Between POSIX and Wind Scheduling

POSIX and Wind scheduling routines differ in the following ways:

POSIX scheduling is based on processes, while Wind scheduling is based on
tasks. Tasks and processes differ in several ways. Most notably, tasks can
address memory directly while processes cannot; and processes inherit only
some specific attributes from their parent process, while tasks operate in
exactly the same environment as the parent task.

41

Table 2-12

VxWorks 5.3.1
Programmer’s Guide

Tasks and processes are alike in that they can be scheduled independently.

= VxWorks documentation uses the term preemptive priority scheduling, while
the POSIX standard uses the term FIFO. This difference is purely one of
nomenclature: both describe the same priority-based policy.

= The POSIX scheduling algorithms are applied on a process-by-process basis.

The Wind methodology, on the other hand, applies scheduling algorithms on

a system-wide basis—either all tasks use a round-robin scheme, or all use a
preemptive priority scheme.

= The POSIX priority numbering scheme is the inverse of the Wind scheme. In

POSIX, the higher the number, the higher the priority; in the Wind scheme, the

lower the number, the higher the priority, where 0 is the highest priority.
Accordingly, the priority numbers used with the POSIX scheduling library

(schedPxLib) do not match those used and reported by all other components

of VxWorks. You can override this default by setting the global variable
posixPriorityNumbering to FALSE. If you do this, the Wind numbering
scheme (smaller number = higher priority) is used by schedPxLib, and its
priority numbers match those used by the other components of VxWorks.

The POSIX scheduling routines are included when INCLUDE_POSIX_SCHED is
defined in configAll.h; see 8. Configuration for information on configuring
VxWorks.

POSIX Scheduling Calls

Call Description

sched_setparam() Set a task’s priority.

sched_getparam() Get the scheduling parameters for a specified task.
sched_setscheduler() Set scheduling policy and parameters for a task.
sched_yield() Relinquish the CPU.

sched_getscheduler() Get the current scheduling policy.
sched_get_priority_max() Get the maximum priority.
sched_get_priority_min() Get the minimum priority.

sched_rr_get_interval() If round-robin scheduling, get the time slice length.

42

2
Basic OS

Getting and Setting POSIX Task Priorities

Example 2-1

The routines sched_setparam() and sched_getparam() set and get a task’s priority,
respectively. Both routines take a task ID and a sched_param structure (defined in
h/sched.h). A task ID of 0 sets or gets the priority for the calling task. The
sched_priority member of the sched_param structure specifies the new task
priority when sched_setparam() is called. The routine sched_getparam() fills in
the sched_priority with the specified task’s current priority.

Getting and Setting POSIX Task Priorities

[* This example sets the calling task’s priority to 150, then verifies
*that priority. To run from the shell, spawn as a task:
* > gp priorityTest
*
/

/¥ includes */
#include "vxWorks.h"
#include "sched.h"

[* defines */
#define PX_NEW_PRIORITY 150

STATUS priority Test (void)
struct sched_param myParam;

[* initialize param structure to desired priority */
myParam.sched_priority = PX_NEW_PRIORITY;
if (sched_setparam (0, &myParam) == ERROR)

printf (“error setting priority\n");
return (ERROR);

/* demonstrate getting a task priority as a sanity check; ensure it
* is the same value that we just set.
*

if (sched_getparam (0, &myParam) == ERROR)

printf (“error getting priority\n");
return (ERROR);

if (myParam.sched_priority |= PX_NEW_PRIORITY)

printf ("error - priorities do not match\n");
return (ERROR);

else
printf ("task priority = %d\n", myParam.sched_priority);

return (OK);

43

VxWorks 5.3.1
Programmer’s Guide

The routine sched_setscheduler() is designed to set both scheduling policy and
priority for a single POSIX process (which corresponds in most other cases to a
single Wind task). In the VxWorks kernel, sched_setscheduler() controls only task
priority, because the kernel does not allow tasks to have scheduling policies that
differ from one another. If its policy specification matches the current system-wide
scheduling policy, sched_setscheduler(') sets only the priority, thus acting like
sched_setparam(). If its policy specification does not match the current one,
sched_setscheduler() returns an error.

The only way to change the scheduling policy is to change it for all tasks; there is
no POSIX routine for this purpose. To set a system-wide scheduling policy, use the
Wind function kernel TimeSlice() described in Round-Robin Scheduling, p.33.

Getting and Displaying the Current Scheduling Policy

Example 2-2

The POSIX routine sched_getscheduler() returns the current scheduling policy.
There are two valid scheduling policies in VxWorks: preemptive priority
scheduling (in POSIX terms, SCHED_FIFO) and round-robin scheduling by
priority (SCHED_RR).

Getting POSIX Scheduling Policy

/* This example gets the scheduling policy and displays it. */

/*includes */

#include "vxWorks.h"
#include "sched.h"

STATUS schedulerTest (void)
int policy;
if ((policy = sched_getscheduler (0)) == ERROR)
érintf ("getting scheduler failed\n");
;eturn (ERRORY);

/* sched_getscheduler returns either SCHED_FIFO or SCHED_RR */
if (policy == SCHED_FIFO)
printf ("current scheduling policy is FIFO\n");

else
printf ("current scheduling policy is round robin\n");

return (OK);
}

44

2
Basic OS

Getting Scheduling Parameters: Priority Limits and Time Slice

Example 2-3

The routines sched_get_priority_max() and sched_get_priority_min() return the
maximum and minimum possible POSIX priority values, respectively.

If round-robin scheduling is enabled, you can use sched_rr_get_interval() to
determine the length of the current time-slice interval. This routine takes as an
argument a pointer to a timespec structure (defined in time.h), and writes the
number of seconds and nanoseconds per time slice to the appropriate elements of
that structure.

Getting the POSIX Round-Robin Time Slice

/* The following example checks that round-robin scheduling is enabled,
* gets the length of the time slice, and then displays the time slice.
*

/*includes */

#include "vxWorks.h"
#include "sched.h"

STATUS rrgetintervalTest (void)
struct timespec slice;
/* turn on round robin */
kernelTimeSlice (30);
if (sched_rr_get_interval (0, &slice) == ERROR)
E)rintf ("get-interval test failed\n");

return (ERROR);

printf (“time slice is %l seconds and %l nanoseconds\n",
slice.tv_sec, slice.tv_nsec);

return (OK);

}

2.3.7 Task Error Status: errno

By convention, C library functions set a single global integer variable errno to an
appropriate error number whenever the function encounters an error. This
convention is specified as part of the ANSI C standard.

45

VxWorks 5.3.1
Programmer’s Guide

Layered Definitions of errno

In VXWorks, errno is simultaneously defined in two different ways. There is, as in
ANSI C, an underlying global variable called errno, which you can display by
name using Tornado development tools; see the Tornado User’s Guide. However,
errno is also defined as a macro in errno.h; this is the definition visible to all of
VxWorks except for one function. The macro is defined as a call to a function
__errno() that returns the address of the global variable, errno (as you might
guess, this is the single function that does not itself use the macro definition for
errno). This subterfuge yields a useful feature: because __errno() is a function, you
can place breakpoints on it while debugging, to determine where a particular error
occurs. Nevertheless, because the result of the macro errno is the address of the
global variable errno, C programs can set the value of errno in the standard way:

errno = someErrorNumber;

As with any other errno implementation, take care not to have a local variable of
the same name.

A Separate errno Value for Each Task

In VxWorks, the underlying global errno is a single predefined global variable that
can be referenced directly by application code that is linked with VxWorks (either
statically on the host or dynamically at load time). However, for errno to be useful
in the multitasking environment of VxWorks, each task must see its own version
of errno. Therefore errno is saved and restored by the kernel as part of each task’s
context every time a context switch occurs. Similarly, interrupt service routines
(ISRs) see their own versions of errno.

This is accomplished by saving and restoring errno on the interrupt stack as part
of the interrupt enter and exit code provided automatically by the kernel (see
2.5.1 Connecting Application Code to Interrupts, p.94). Thus, regardless of the
VxWorks context, an error code can be stored or consulted with direct
manipulation of the global variable errno.

Error Return Convention
Almost all VxWorks functions follow a convention that indicates simple success or
failure of their operation by the actual return value of the function. Many functions

return only the status values OK (0) or ERROR (-1). Some functions that normally
return a nonnegative number (for example, open() returns a file descriptor) also

46

2
Basic OS

return ERROR to indicate an error. Functions that return a pointer usually return
NULL (0) to indicate an error. In most cases, a function returning such an error
indication also sets errno to the specific error code.

The global variable errno is never cleared by VxWorks routines. Thus, its value
always indicates the last error status set. When a VxWorks subroutine gets an error
indication from a call to another routine, it usually returns its own error indication
without modifying errno. Thus, the value of errno that is set in the lower-level
routine remains available as the indication of error type.

For example, the VxWorks routine intConnect(), which connects a user routine to
a hardware interrupt, allocates memory by calling malloc() and builds the
interrupt driver in this allocated memory. If malloc() fails because insufficient
memory remains in the pool, it sets errno to a code indicating an insufficient-
memory error was encountered in the memory allocation library, memLib. The
malloc() routine then returns NULL to indicate the failure. The intConnect()
routine, receiving the NULL from malloc(), then returns its own error indication of
ERROR. However, it does not alter errno, leaving it at the “insufficient memory”
code set by malloc(). For example:

if (pNew = malloc (CHUNK_SIZE)) == NULL)

return (ERROR);

We recommend that you use this mechanism in your own subroutines, setting and
examining errno as a debugging technique. A string constant associated with
errno can be displayed using printErrno() if the errno value has a corresponding
string entered in the error-status symbol table, statSymTDbl. See the reference entry
errnoLib for details on error-status values and building statSymThbl.

Assignment of Error Status Values

VxWorks errno values encode the module that issues an error, in the most
significant two bytes, and use the least significant two bytes for individual error
numbers. All VxWorks module numbers are in the range 1-500; errno values with
a “module” number of zero are used for source compatibility.

All other errno values (that is, positive values greater than or equal to 501<<16,
and all negative values) are available for application use.

See the reference entry on errnoLib for more information about defining and
decoding errno values with this convention.

47

VxWorks 5.3.1
Programmer’s Guide

2.3.8 Task Exception Handling

Errors in program code or data can cause hardware exception conditions such as
illegal instructions, bus or address errors, divide by zero, and so forth. The
VxWorks exception handling package takes care of all such exceptions. The default
exception handler suspends the task that caused the exception, and saves the state
of the task at the point of the exception. The kernel and other tasks continue
uninterrupted. A description of the exception is transmitted to the Tornado
development tools, which can be used to examine the suspended task; see the
Tornado User’s Guide: Shell for details.

Tasks can also attach their own handlers for certain hardware exceptions through
the signal facility. If a task has supplied a signal handler for an exception, the
default exception handling described above is not performed. Signals are also used
for signaling software exceptions as well as hardware exceptions. They are
described in more detail in 2.4.7 Signals, p.90 and in the reference entry for sigLib.

2.3.9 Shared Code and Reentrancy

In VxWorks, it is common for a single copy of a subroutine or subroutine library to
be invoked by many different tasks. For example, many tasks may call printf(), but
there is only a single copy of the subroutine in the system. A single copy of code
executed by multiple tasks is called shared code. VxWorks dynamic linking facilities
make this particularly easy. Shared code also makes the system more efficient and
easier to maintain; see Figure 2-4.

Shared code must be reentrant. A subroutine is reentrant if a single copy of the
routine can be called from several task contexts simultaneously without conflict.
Such conflict typically occurs when a subroutine modifies global or static
variables, because there is only a single copy of the data and code. A routine’s
references to such variables can overlap and interfere in invocations from different
task contexts.

Most routines in VxWorks are reentrant. However, all routines which have a
corresponding name_r() routine should be assumed non-reentrant. For example,
because Idiv() has a corresponding routine Idiv_r(), you can assume that Idiv() is
not reentrant.

VxWorks 1/0 and driver routines are reentrant, but require careful application
design. For buffered 1/0, we recommend using file-pointer buffers on a per-task
basis. At the driver level, it is possible to load buffers with streams from different
tasks, due to the global file descriptor table in VxWorks. This may or may not be
desirable, depending on the nature of the application. For example, a packet driver

48

2
Basic OS

Figure 2-4 Shared Code

TASKS SHARED CODE

taskOne (void)
{

'rﬁyFunc();

} myFun{c (void)

-

taskTwo (void)

myFunc();

can mix streams from different tasks because the packet header identifies the
destination of each packet.

The majority of VxWorks routines use the following reentrancy techniques:
— dynamic stack variables
— global and static variables guarded by semaphores
— task variables

We recommend applying these same techniques when writing application code
that can be called from several task contexts simultaneously.

Dynamic Stack Variables

Many subroutines are pure code, having no data of their own except dynamic stack
variables. They work exclusively on data provided by the caller as parameters. The
linked-list library, IstLib, is a good example of this. Its routines operate on lists and
nodes provided by the caller in each subroutine call.

Subroutines of this kind are inherently reentrant. Multiple tasks can use such
routines simultaneously without interfering with each other, because each task
does indeed have its own stack. See Figure 2-5.

49

VxWorks 5.3.1
Programmer’s Guide

Figure 2-5 Stack Variables and Shared Code

TASKS TASK STACKS COMMON SUBROUTINE

taskOne ()

{ myDataOne

comFunc() (myDataOne); | s
taSkTV\%O 0) comFunc (yourData)

myDataTwo
. ‘_> e
comFunc() (myDataTwo); {

Guarded Global and Static Variables

Some libraries encapsulate access to common data. One example is the memory
allocation library, memLib, which manages pools of memory to be used by many
tasks. This library declares and uses its own static data variables to keep track of
pool allocation.

This kind of library requires some caution because the routines are not inherently
reentrant. Multiple tasks simultaneously invoking the routines in the library might
interfere with access to common variables. Such libraries must be made explicitly
reentrant by providing a mutual-exclusion mechanism to prohibit tasks from
simultaneously executing critical sections of code. The usual mutual-exclusion
mechanism is the semaphore facility provided by semLib and described in

2.4.3 Semaphores, p.57.

Task Variables

Some routines that can be called by multiple tasks simultaneously may require
global or static variables with a distinct value for each calling task. For example,
several tasks may reference a private buffer of memory and yet refer to it with the
same global variable.

50

2
Basic OS

To accommodate this, VxXWorks provides a facility called task variables that allows
4-byte variables to be added to a task’s context, so that the value of such a variable
is switched every time a task switch occurs to or from its owner task. Typically,
several tasks declare the same variable (4-byte memory location) as a task variable.
Each of those tasks can then treat that single memory location as its own private
variable; see Figure 2-6. This facility is provided by the routines taskVarAdd(),
taskVarDelete(), taskVarSet(), and taskVarGet(), which are described in the
reference entry for taskVarLib.

Figure 2-6 Task Variables and Context Switches

OLD TCB NEW TCB

pTaskVar

globDat

pTaskVar - globDat

value saved value restored
in old from new
task’'s TCB task’'s TCB

current value of
globDat

Use this mechanism sparingly. Each task variable adds a few microseconds to the
context switching time for its task, because the value of the variable must be saved
and restored as part of the task’s context. Consider collecting all of a module’s task
variables into a single dynamically allocated structure, and then making all
accesses to that structure indirectly through a single pointer. This pointer can then
be the task variable for all tasks using that module.

Multiple Tasks with the Same Main Routine

With VxWorks, it is possible to spawn several tasks with the same main routine.
Each spawn creates a new task with its own stack and context. Each spawn can also
pass the main routine different parameters to the new task. In this case, the same
rules of reentrancy described in Task Variables, p.50 apply to the entire task.

51

VxWorks 5.3.1
Programmer’s Guide

This is useful when the same function needs to be performed concurrently with
different sets of parameters. For example, a routine that monitors a particular kind
of equipment might be spawned several times to monitor several different pieces
of that equipment. The arguments to the main routine could indicate which
particular piece of equipment the task is to monitor.

In Figure 2-7, multiple joints of the mechanical arm use the same code. The tasks
manipulating the joints invoke joint(). The joint number (jointNum) is used to
indicate which joint on the arm to manipulate.

Figure 2-7 Multiple Tasks Utilizing Same Code

joint_2
T~ joint_3
joint_1 e
\
joint

(

int jointNum
)

{

[* joint code here */
}

2.3.10 VxWorks System Tasks

VxWorks includes several system tasks, described in the following sections.

The Root Task: tUsrRoot

The root task, tUsrRoot, is the first task executed by the kernel. The entry point of
the root task is usrRoot() in config/all/usrConfig.c and initializes most VxWorks
facilities. It spawns such tasks as the logging task, the exception task, the network
task, and the tRlogind daemon. Normally, the root task terminates and is deleted
after all initialization has occurred. You are free to add any necessary initialization
to the root task. For more information, see 8.3 Configuring VVxWorks, p.430.

52

2
Basic OS

The Logging Task: tLogTask

The log task, tLogTask, is used by VxWorks modules to log system messages
without having to perform 1/0 in the current task context. For more information,
see 3.5.3 Message Logging, p.122 and the reference entry for logLib.

The Exception Task: tExcTask

The exception task, tExcTask, supports the VxWorks exception handling package
by performing functions that cannot occur at interrupt level. It must have the
highest priority in the system. Do not suspend, delete, or change the priority of this
task. For more information, see the reference entry for excLib.

The Network Task: tNetTask

The tNetTask daemon handles the task-level functions required by the VxWorks
network.

The Target Agent Task: tWdbTask

The target agent task, tWdbTask, is created if the target agent is set to run in task
mode; see 8.4.1 Scaling Down VxWorks, p.447. It services requests from the Tornado
target server; for information on this server, see the Tornado User’s Guide: Overview.

Tasks for Optional Components

The following VxWorks system tasks are created if their associated configuration
constants are defined; for more information, see 8.3 Configuring VxWorks, p.430.

tShell If you have included the target shell in the VxWorks configuration, it
is spawned as this task. Any routine or task that is invoked from the
target shell, rather than spawned, runs in the tShell context. For more
information, see 9. Target Shell.

tRlogind If you have included the target shell and the rlogin facility in the
VxWorks configuration, this daemon allows remote users to log in to
VxWorks. It accepts a remote login request from another VxWorks or
host system and spawns tRlogInTask and tRlogOutTask. These tasks
exist as long as the remote user is logged on. During the remote

53

VxWorks 5.3.1
Programmer’s Guide

session, the shell’s (and any other task’s) input and output are
redirected to the remote user. A tty-like interface is provided to the
remote user through the use of the VxWorks pseudo-terminal driver,
ptyDrv. For more information, see 3.7.1 Serial 1/0 Devices (Terminal and
Pseudo-Terminal Devices), p.131 and the reference entry for ptyDrv.

tTelnetd If you have included the target shell and the telnet facility in the
VxWorks configuration, this daemon allows remote users to log in to
VxWorks with telnet. It accepts a remote login request from another
VxWorks or host system and spawns the input task tTelnetinTask and
output task tTelnetOutTask. These tasks exist as long as the remote
user is logged on. During the remote session, the shell’s (and any other
task’s) input and output are redirected to the remote user. A tty-like
interface is provided to the remote user through the use of the
VxWorks pseudo-terminal driver, ptyDrv. See 3.7.1 Serial 1/0 Devices
(Terminal and Pseudo-Terminal Devices), p.131 and the reference entry
for ptyDrv for further explanation.

tPortmapd If you have included the RPC facility in the VxWorks configuration,
this daemon is an RPC server that acts as a central registrar for RPC
servers running on the same machine. RPC clients query the
tPortmapd daemon to find out how to contact the various servers.

tRdbTask If you have included the RDB facility in the VxWorks configuration,
this daemon services requests made by remote source-level
debuggers. The RDB modules fill a role roughly analogous to that of
the target agent, except that the RDB connection relies on VxWorks
facilities, such as the target-resident symbol table and the target-
resident dynamic linker. For more information on remote debugging,
see the Tornado User’s Guide: Debugger.

2.4 Intertask Communications

The complement to the multitasking routines described in the 2.3 Tasks, p.30 is the
intertask communication facilities. These facilities permit independent tasks to
coordinate their actions.

VxWorks supplies a rich set of intertask communication mechanisms, including:

Shared memory, for simple sharing of data.

54

2
Basic OS

= Semaphores, for basic mutual exclusion and synchronization.
= Message queues and pipes, for intertask message passing within a CPU.

= Sockets and remote procedure calls, for network-transparent intertask
communication.

= Signals, for exception handling.

The optional product, VXMP, provides intertask communication over the
backplane for tasks running on different CPUs. This includes shared semaphores,
shared message queues, shared memory, and the shared name database.

2.4.1 Shared Data Structures

The most obvious way for tasks to communicate is by accessing shared data
structures. Because all tasks in VxWorks exist in a single linear address space,
sharing data structures between tasks is trivial; see Figure 2-8. Global variables,
linear buffers, ring buffers, linked lists, and pointers can be referenced directly by
code running in different contexts.

Figure 2-8 Shared Data Structures

TASKS MEMORY

access
task 1 |sharedData

sharedData

access

task2 | sharedData

access
task 3 |sharedData

2.4.2 Mutual Exclusion

While a shared address space simplifies exchange of data, interlocking access to
memory is crucial to avoid contention. Many methods exist for obtaining exclusive
access to resources, and vary only in the scope of the exclusion. Such methods
include disabling interrupts, disabling preemption, and resource locking with
semaphores.

55

VxWorks 5.3.1
Programmer’s Guide

Interrupt Locks and Latency

The most powerful method available for mutual exclusion is the disabling of
interrupts. Such a lock guarantees exclusive access to the CPU:

funcA ()
int lock = intLock();
. critical region that cannot be interrupted

intUnIock (lock);

While this solves problems involving mutual exclusion with ISRs, it is
inappropriate as a general-purpose mutual-exclusion method for most real-time
systems, because it prevents the system from responding to external events for the
duration of these locks. Interrupt latency is unacceptable whenever an immediate
response to an external event is required. However, interrupt locking can
sometimes be necessary where mutual exclusion involves ISRs. In any situation,
keep the duration of interrupt lockouts short.

Preemptive Locks and Latency

Disabling preemption offers a somewhat less restrictive form of mutual exclusion.
While no other task is allowed to preempt the current executing task, ISRs are able
to execute:

funcA ()
{
taskLock ();
. critical region that cannot be interrupted

taskUnlock ();

}
However, this method can lead to unacceptable real-time response. Tasks of higher
priority are unable to execute until the locking task leaves the critical region, even
though the higher-priority task is not itself involved with the critical region. While
this kind of mutual exclusion is simple, if you use it, make sure to keep the
duration short. A better mechanism is provided by semaphores, discussed in
2.4.3 Semaphores, p.57.

56

2
Basic OS

2.4.3 Semaphores

VxWorks semaphores are highly optimized and provide the fastest intertask
communication mechanism in VxWorks. Semaphores are the primary means for
addressing the requirements of both mutual exclusion and task synchronization:

= For mutual exclusion, semaphores interlock access to shared resources. They
provide mutual exclusion with finer granularity than either interrupt
disabling or preemptive locks, discussed in 2.4.2 Mutual Exclusion, p.55.

= For synchronization, semaphores coordinate a task’s execution with external
events.

There are three types of Wind semaphores, optimized to address different classes
of problems:

binary The fastest, most general-purpose semaphore. Optimized for
synchronization or mutual exclusion.

mutual exclusion A special binary semaphore optimized for problems inherent
in mutual exclusion: priority inheritance, deletion safety, and
recursion.

counting Like the binary semaphore, but keeps track of the number of
times a semaphore is given. Optimized for guarding multiple
instances of a resource.

VxWorks provides not only the Wind semaphores, designed expressly for
VxWorks, but also POSIX semaphores, designed for portability. An alternate
semaphore library provides the POSIX-compatible semaphore interface; see
POSIX Semaphores, p.67.

The semaphores described here are for use on a single CPU. The optional product
VXMP provides semaphores that can be used across processors; see 6. Shared-
Memory Objects.

Semaphore Control

Instead of defining a full set of sesmaphore control routines for each type of
semaphore, the Wind semaphores provide a single uniform interface for
semaphore control. Only the creation routines are specific to the semaphore type.
Table 2-13 lists the semaphore control routines.

The semBCreate(), ssmMCreate(), and semCCreate() routines return a
semaphore ID that serves as a handle on the semaphore during subsequent use by

57

VxWorks 5.3.1
Programmer’s Guide

Table 2-13 Semaphore Control Routines

Call Description

semBCreate() Allocate and initialize a binary semaphore.
semMCreate() Allocate and initialize a mutual-exclusion semaphore.
semCCreate() Allocate and initialize a counting semaphore.
semDelete() Terminate and free a semaphore.

semTake() Take a semaphore.

semGive() Give a semaphore.

semFlush() Unblock all tasks that are waiting for a semaphore.

the other semaphore-control routines. When a semaphore is created, the queue
type is specified. Tasks pending on a semaphore can be queued in priority order
(SEM_Q_PRIORITY) or in first-in first-out order (SEM_Q_FIFO).

A WARNING: The semDelete() call terminates a semaphore and deallocates any
associated memory. Take care when deleting semaphores, particularly those used
for mutual exclusion, to avoid deleting a semaphore that another task still requires.
Do not delete a semaphore unless the same task first succeeds in taking it.

Binary Semaphores

The general-purpose binary semaphore is capable of addressing the requirements
of both forms of task coordination: mutual exclusion and synchronization. The
binary semaphore has the least overhead associated with it, making it particularly
applicable to high-performance requirements. The mutual-exclusion semaphore
described in Mutual-Exclusion Semaphores, p.62 is also a binary semaphore, but it
has been optimized to address problems inherent to mutual exclusion.
Alternatively, the binary semaphore can be used for mutual exclusion if the
advanced features of the mutual-exclusion semaphore are deemed unnecessary.

A binary semaphore can be viewed as a flag that is available (full) or unavailable
(empty). When a task takes a binary semaphore, with semTake(), the outcome
depends on whether the semaphore is available (full) or unavailable (empty) at the
time of the call; see Figure 2-9. If the semaphore is available (full), the semaphore
becomes unavailable (empty) and the task continues executing immediately. If the
semaphore is unavailable (empty), the task is put on a queue of blocked tasks and
enters a state of pending on the availability of the semaphore.

58

2

Basic OS
Figure 2-9 Taking a Semaphore
task is
; _ no pended for
semaphore timeout = timeout
available? NO_WAIT value

task continues; task continues;
semaphore semaphore
taken not taken

Figure 2-10 Giving a Semaphore

no

task continues,
semaphore
made available

tasks
pended?

semaphore
available?

task continues; task at front of
semaphore gueue made ready;
remains semaphore remains
unchanged unavailable

When a task gives a binary semaphore, using semGive(), the outcome also
depends on whether the semaphore is available (full) or unavailable (empty) at the
time of the call; see Figure 2-10. If the semaphore is already available (full), giving
the semaphore has no effect at all. If the semaphore is unavailable (empty) and no
task is waiting to take it, then the semaphore becomes available (full). If the
semaphore is unavailable (empty) and one or more tasks are pending on its
availability, then the first task in the queue of blocked tasks is unblocked, and the
semaphore is left unavailable (empty).

59

VxWorks 5.3.1
Programmer’s Guide

Mutual Exclusion

Binary semaphores interlock access to a shared resource efficiently. Unlike
disabling interrupts or preemptive locks, binary semaphores limit the scope of the
mutual exclusion to only the associated resource. In this technique, a semaphore is
created to guard the resource. Initially the semaphore is available (full).

/*includes */

#include "vxWorks.h"
#include "semLib.h"

SEM_ID semMutex;

/* Create a binary semaphore that is initially full. Tasks *
* blocked on semaphore wait in priority order. */

semMutex = semBCreate (SEM_Q_PRIORITY, SEM_FULL);

When a task wants to access the resource, it must first take that semaphore. As long
as the task keeps the semaphore, all other tasks seeking access to the resource are
blocked from execution. When the task is finished with the resource, it gives back
the semaphore, allowing another task to use the resource.

Thus all accesses to a resource requiring mutual exclusion are bracketed with
semTake() and semGive() pairs:

semTake (semMutex, WAIT_FOREVER);
critical region, only accessible by a single task at a time

semGive (semMutex);

Synchronization

When used for task synchronization, a semaphore can represent a condition or
event that a task is waiting for. Initially the semaphore is unavailable (empty). A
task or ISR signals the occurrence of the event by giving the semaphore (see

2.5 Interrupt Service Code, p.93 for a complete discussion of ISRs). Another task
waits for the semaphore by calling semTake(). The waiting task blocks until the
event occurs and the semaphore is given.

Note the difference in sequence between semaphores used for mutual exclusion
and those used for synchronization. For mutual exclusion, the semaphore is
initially full, and each task first takes, then gives back the semaphore. For
synchronization, the semaphore is initially empty, and one task waits to take the
semaphore given by another task.

In Example 2-4, the init() routine creates the binary semaphore, attaches an ISR to
an event, and spawns a task to process the event. The routine task1() runs until it

60

Example 2-4

2
Basic OS

calls semTake(). It remains blocked at that point until an event causes the ISR to
call semGive(). When the ISR completes, task1() executes to process the event.
There is an advantage of handling event processing within the context of a
dedicated task: less processing takes place at interrupt level, thereby reducing
interrupt latency. This model of event processing is recommended for real-time
applications.

Using Semaphores for Task Synchronization
[* This example shows the use of semaphores for task synchronization. */

/*includes */

#include "vxWorks.h"

#include "semLib.h"

#include "arch/ arch/iv arch.h" /* replace arch with architecture type */

SEM_ID syncSem; * ID of sync semaphore */

init (
int somelntNum

)

[* connect interrupt service routine */
intConnect (INUM_TO_IVEC (somelntNum), eventinterruptSvcRout, 0);

[* create semaphore */
syncSem = semBCreate (SEM_Q_FIFO, SEM_EMPTY);

/* spawn task used for synchronization. */
taskSpawn ("sample”, 100, 0, 20000, task1, 0,0,0,0,0,0,0,0,0,0);

taskl (void)

semTake (syncSem, WAIT_FOREVER); /* wait for event to occur */
printf (“task 1 got the semaphore\n");
... I* process event */

}

eventinterruptSvcRout (void)

semGive (syncSem); /* lettask 1 process event */

Broadcast synchronization allows all processes that are blocked on the same
semaphore to be unblocked atomically. Correct application behavior often requires
a set of tasks to process an event before any task of the set has the opportunity to
process further events. The routine semFlush() addresses this class of
synchronization problem by unblocking all tasks pended on a semaphore.

61

VxWorks 5.3.1
Programmer’s Guide

Mutual-Exclusion Semaphores

The mutual-exclusion semaphore is a specialized binary semaphore designed to
address issues inherent in mutual exclusion, including priority inversion, deletion
safety, and recursive access to resources.

The fundamental behavior of the mutual-exclusion semaphore is identical to the
binary semaphore, with the following exceptions:

= It can be used only for mutual exclusion.

= It can be given only by the task that took it.
= It cannot be given from an ISR.

= The semFlush() operation is illegal.

Priority Inversion

Priority inversion arises when a higher-priority task is forced to wait an indefinite
period of time for a lower-priority task to complete. Consider the scenario in
Figure 2-11: t1, t2, and t3 are tasks of high, medium, and low priority, respectively.
t3 has acquired some resource by taking its associated binary guard semaphore.
When t1 preempts t3 and contends for the resource by taking the same semaphore,
it becomes blocked. If we could be assured that t1 would be blocked no longer than
the time it normally takes t3 to finish with the resource, there would be no problem
because the resource cannot be preempted. However, the low-priority task is
vulnerable to preemption by medium-priority tasks (like t2), which could inhibit
t3 from relinquishing the resource. This condition could persist, blocking t1 for an
indefinite period of time.

The mutual-exclusion semaphore has the option SEM_INVERSION_SAFE, which
enables a priority-inheritance algorithm. The priority-inheritance protocol assures
that a task that owns a resource executes at the priority of the highest-priority task
blocked on that resource. Once the task priority has been elevated, it remains at the
higher level until all mutual-exclusion semaphores that the task owns are released;
then the task returns to its normal, or standard, priority. Hence, the “inheriting”
task is protected from preemption by any intermediate-priority tasks. This option
must be used in conjunction with a priority queue (SEM_Q_PRIORITY).

In Figure 2-12, priority inheritance solves the problem of priority inversion by
elevating the priority of t3 to the priority of t1 during the time t1 is blocked on the
semaphore. This protects t3, and indirectly t1, from preemption by t2.

The following example creates a mutual-exclusion semaphore that uses the
priority inheritance algorithm:

semld = semMCreate (SEM_Q_PRIORITY | SEM_INVERSION_SAFE);

62

Figure 2-11

Figure 2-12

Priority Inversion

HIGH

LOW

KEY:

priority ———
<

2
Basic OS

7 ©

\
&/

time

Priority Inheritance

HIGH

LOW

t2

V¥V =take semaphore f = preemption
VY = give semaphore T¢ = priority inheritance/release
= own semaphore I = block
\J v
L u | t1
2
5 7
sy

time

63

VxWorks 5.3.1
Programmer’s Guide

Deletion Safety

Another problem of mutual exclusion involves task deletion. Within a critical
region guarded by semaphores, it is often desirable to protect the executing task
from unexpected deletion. Deleting a task executing in a critical region can be
catastrophic. The resource might be left in a corrupted state and the semaphore
guarding the resource left unavailable, effectively preventing all access to the
resource.

The primitives taskSafe() and taskUnsafe() provide one solution to task deletion.
However, the mutual-exclusion semaphore offers the option SEM_DELETE_SAFE,
which enables an implicit taskSafe() with each semTake(), and a taskUnsafe()
with each semGive(). In this way, a task can be protected from deletion while it has
the semaphore. This option is more efficient than the primitives taskSafe() and
taskUnsafe(), as the resulting code requires fewer entrances to the kernel.

semld = semMCreate (SEM_Q_FIFO | SEM_DELETE_SAFE);

Recursive Resource Access

Example 2-5

Mutual-exclusion semaphores can be taken recursively. This means that the
semaphore can be taken more than once by the task that owns it before finally
being released. Recursion is useful for a set of routines that must call each other but
that also require mutually exclusive access to a resource. This is possible because
the system keeps track of which task currently owns the mutual-exclusion
semaphore.

Before being released, a mutual-exclusion semaphore taken recursively must be
given the same number of times it is taken. This is tracked by a count that
increments with each semTake() and decrements with each semGive().

Recursive Use of a Mutual-Exclusion Semaphore

/* Function A requires access to a resource which it acquires by taking
* mySem; function A may also need to call function B, which also
* requires mySem:
*

/*includes */

#include "vxWorks.h"

#include "semLib.h"

SEM_ID mySem;

/* Create a mutual-exclusion semaphore. */

init ()

mySem = semMCreate (SEM_Q_PRIORITY);
}

64

2
Basic OS

funcA ()

{
semTake (mySem, WAIT_FOREVER);
printf (“funcA: Got mutual-exclusion semaphore\n“);

fILjncB 0;

éémGive (mySem);
printf ("funcA: Released mutual-exclusion semaphore\n”);

}
funcB ()

{
semTake (mySem, WAIT_FOREVER);
printf (“funcB: Got mutual-exclusion semaphore\n“);

semGive (mySem);
printf ("funcB: Releases mutual-exclusion semaphore\n");

}

Counting Semaphores

Table 2-14

Counting semaphores are another means to implement task synchronization and
mutual exclusion. The counting semaphore works like the binary semaphore
except that it keeps track of the number of times a semaphore is given. Every time
a semaphore is given, the count is incremented; every time a semaphore is taken,
the count is decremented. When the count reaches zero, a task that tries to take the
semaphore is blocked. As with the binary semaphore, if a semaphore is given and
atask is blocked, it becomes unblocked. However, unlike the binary semaphore, if
asemaphore is given and no tasks are blocked, then the count is incremented. This
means that a semaphore that is given twice can be taken twice without blocking.
Table 2-14 shows an example time sequence of tasks taking and giving a counting
semaphore that was initialized to a count of 3.

Counting Semaphore Example

Semaphore Call Count after Call Resulting Behavior

semCCreate() 3 Semaphore initialized with initial count of 3.
semTake() 2 Semaphore taken.

semTake() 1 Semaphore taken.

semTake() 0 Semaphore taken.

semTake() 0 Task blocks waiting for semaphore to be available.
semGive() 0 Task waiting is given semaphore.

semGive() 1 No task waiting for semaphore; count incremented.

65

VxWorks 5.3.1
Programmer’s Guide

Counting semaphores are useful for guarding multiple copies of resources. For
example, the use of five tape drives might be coordinated using a counting
semaphore with an initial count of 5, or a ring buffer with 256 entries might be
implemented using a counting semaphore with an initial count of 256. The initial
count is specified as an argument to the semCCreate() routine.

Special Semaphore Options

Timeouts

Queues

The uniform Wind semaphore interface includes two special options. These
options are not available for the POSIX-compatible semaphores described in
POSIX Semaphores, p.67.

Wind semaphores include the ability to time out from the pended state. This is
controlled by a parameter to semTake() that specifies the amount of time in ticks
that the task is willing to wait in the pended state. If the task succeeds in taking the
semaphore within the allotted time, semTake() returns OK. The errno set when a
semTake() returns ERROR due to timing out before successfully taking the
semaphore depends upon the timeout value passed. A semTake() with NO_WAIT
(0), which means do not wait at all, sets errno to S_objLib_OBJ_UNAVAILABLE. A
semTake() with a positive timeout value returns S_objLib_OBJ_TIMEOUT. A
timeout value of WAIT_FOREVER (-1) means wait indefinitely.

Wind semaphores include the ability to select the queuing mechanism employed
for tasks blocked on a semaphore. They can be queued based on either of two
criteria: first-in first-out (FIFO) order, or priority order; see Figure 2-13.

Priority ordering better preserves the intended priority structure of the system at
the expense of some overhead in semTake() in sorting the tasks by priority. A FIFO
gueue requires no priority sorting overhead and leads to constant-time
performance. The selection of queue type is specified during semaphore creation
with semBCreate(), ssmMCreate(), or ssmCCreate(). Semaphores using the
priority inheritance option (SEM_INVERSION_SAFE) must select priority-order
gueuing.

66

2

Basic OS
Figure 2-13 Task Queue Types
PRIORITY QUEUE FIFO QUEUE
TCE
TCB e] TCB
200 ‘ ! TC
120. TCB 4190 TCB
—— 100
-1 80 140
TCB TCB
110 «+— priority 110

POSIX Semaphores

POSIX defines both named and unnamed semaphores, which have the same
properties, but use slightly different interfaces. The POSIX semaphore library
provides routines for creating, opening, and destroying both named and unnamed
semaphores. The POSIX semaphore routines provided by semPxLib are shown in
Table 2-15.

With named semaphores, you assign a symbolic name! when opening the
semaphore; the other named-semaphore routines accept this name as an
argument.

The POSIX terms wait (or lock) and post (or unlock) correspond to the VxWorks
terms take and give, respectively.

The initialization routine semPxLiblInit() is called by default when
INCLUDE_POSIX_SEM is defined in configAll.h. The routines sem_open(),
sem_unlink(), and sem_close() are for opening and closing/destroying named

1. Some host operating systems, such as UNIX, require symbolic names for objects that are to
be shared among processes. This is because processes do not normally share memory in
such operating systems. In VxWorks, there is no requirement for named semaphores,
because all objects are located within a single address space, and reference to shared objects
by memory location is standard practice.

67

Table 2-15

VxWorks 5.3.1
Programmer’s Guide

semaphores only; sem_init() and sem_destroy() are for initializing and destroying
unnamed semaphores only. The routines for locking, unlocking, and getting the
value of semaphores are used for both named and unnamed semaphores.

POSIX Semaphore Routines

Call Description

semPxLiblInit() Initialize the POSIX semaphore library (non-POSIX).
sem_init() Initialize an unnamed semaphore.

sem_destroy() Destroy an unnamed semaphore.

sem_open() Initialize/open a named semaphore.
sem_close() Close a named semaphore.

sem_unlink() Remove a named semaphore.

sem_wait() Lock a semaphore.

sem_trywait() Lock a semaphore only if it is not already locked.
sem_post() Unlock a semaphore.

sem_getvalue() Get the value of a semaphore.

WARNING: The sem_destroy() call terminates an unnamed semaphore and
deallocates any associated memory; the combination of sem_close() and
sem_unlink() has the same effect for named semaphores. Take care when deleting
semaphores, particularly mutual exclusion semaphores, to avoid deleting a
semaphore still required by another task. Do not delete a semaphore unless the
deleting task first succeeds in locking that semaphore. (Likewise, for named
semaphores, close semaphores only from the same task that opens them.)

Comparison of POSIX and Wind Semaphores

POSIX semaphores are counting semaphores; that is, they keep track of the number
of times they are given.

The Wind semaphore mechanism is similar to that specified by POSIX, except that
Wind semaphores offer additional features: priority inheritance, task-deletion

safety, the ability for a single task to take a semaphore multiple times, ownership
of mutual-exclusion semaphores, semaphore timeouts, and the choice of queuing
mechanism. When these features are important, Wind semaphores are preferable.

68

2
Basic OS

Using Unnamed Semaphores

Example 2-6

In using unnamed semaphores, normally one task allocates memory for the
semaphore and initializes it. A semaphore is represented with the data structure
sem_t, defined in semaphore.h. The semaphore initialization routine, sem_init(),
allows you to specify the initial value.

Once the semaphore is initialized, any task can use the semaphore by locking it
with sem_wait() (blocking) or sem_trywait() (non-blocking), and unlocking it
with sem_post().

As noted earlier, semaphores can be used for both synchronization and mutual
exclusion. When a semaphore is used for synchronization, it is typically initialized
to zero (locked). The task waiting to be synchronized blocks on a sem_wait(). The
task doing the synchronizing unlocks the semaphore using sem_post(). If the task
blocked on the semaphore is the only one waiting for that sesmaphore, the task
unblocks and becomes ready to run. If other tasks are blocked on the semaphore,
the task with the highest priority is unblocked.

When a semaphore is used for mutual exclusion, itis typically initialized to a value
greater than zero (meaning that the resource is available). Therefore, the first task
to lock the semaphore does so without blocking; subsequent tasks block (if the
semaphore value was initialized to 1).
POSIX Unnamed Semaphores
[* This example uses unnamed semaphores to synchronize an action between

* the calling task and a task that it spawns (tSyncTask). To run from

* the shell, spawn as a task:

* ->spunnameSem

*/
/* includes */

#include "vxWorks.h"
#include "semaphore.h"

/* forward declarations */
void syncTask (sem_t * pSem);
void unnameSem (void)
sem_t* pSem;
* reserve memory for semaphore */

pSem = (sem_t *) malloc (sizeof (sem_t));

69

VxWorks 5.3.1
Programmer’s Guide

/* initialize semaphore to unavailable */
if (sem_init (pSem, 0, 0) ==-1)
{

printf ("unnameSem: sem_init failed\n");
return;

}

[* create sync task */

printf ("unnameSem: spawning task...\n");
taskSpawn ("tSyncTask", 90, 0, 2000, syncTask, pSem);

/* do something useful to synchronize with syncTask */
* unlock sem */

printf ("'unnameSem: posting semaphore - synchronizing action\n");
if (sem_post (pSem) ==-1)
{

printf ("unnameSem: posting semaphore failed\n");
return;

}
/* all done - destroy semaphore */
if (sem_destroy (pSem) == -1)

printf ("unnameSem: sem_destroy failed\n");
return;
}

}

void syncTask
(
sem_t* pSem
)
[* wait for synchronization from unnameSem */

if (sem_wait (pSem) == -1)

printf ("syncTask: sem_wait failed \n");
return;

}

printf ("syncTask:sem locked; doing sync’ed action...\n");

else

/* do something useful here */

}

70

2
Basic OS

Using Named Semaphores

Table 2-16

The sem_open() routine either opens a named semaphore that already exists, or, as
an option, creates a new semaphore. You can specify which of these possibilities
you want by combining the following flag values:

O_CREAT Create the semaphore if it does not already exist (if it exists, either fail
or open the semaphore, depending on whether O_EXCL is also
specified).

O_EXCL Open the semaphore only if newly created; fail if the semaphore exists
already.

The possible effects of a call to sem_open(), depending on which flags are set and
on whether the semaphore accessed already exists, are shown in Table 2-16. There
is no entry for O_EXCL alone, because using that flag alone is not meaningful.

Possible Outcomes of Calling sem_open()

Flag Settings Semaphore Exists Semaphore Does Not Exist
None Semaphore is opened Routine fails
O_CREAT Semaphore is opened Semaphore is created
O_CREAT and O_EXCL Routine fails Semaphore is created

A POSIX named semaphore, once initialized, remains usable until explicitly
destroyed. Tasks can explicitly mark a semaphore for destruction at any time, but
the semaphore remains in the system until no task has the semaphore open.

If INCLUDE_SHOW_ROUTINES is defined in the VxWorks configuration (for
details, see 8. Configuration), you can use show() from the Tornado shell to display
information about a POSIX semaphore:2

-> show semld

value = 0 = 0x0
The output is sent to the standard output device, and provides information about
the POSIX semaphore mySem with two tasks blocked waiting for it:

Semaphore name :mySem

sem_open() count 3

Semaphore value :0
No. of blocked tasks :2

. This is not a POSIX routine, nor is it designed for use from programs; use it from the

Tornado shell (see the Tornado User’s Guide: Shell for details).

71

Example 2-7

VxWorks 5.3.1
Programmer’s Guide

For a group of collaborating tasks to use a named semaphore, one of the tasks first
creates and initializes the semaphore (by calling sem_open() with the O_CREAT
flag). Any task that needs to use the semaphore thereafter opens it by calling
sem_open() with the same name (but without setting O_CREAT). Any task that has
opened the semaphore can use it by locking it with sem_wait() (blocking) or
sem_trywait() (non-blocking) and unlocking it with sem_post().

To remove a semaphore, all tasks using it must first close it with sem_close(), and
one of the tasks must also unlink it. Unlinking a semaphore with sem_unlink()
removes the semaphore name from the name table. After the name is removed
from the name table, tasks that currently have the semaphore open can still use it,
but no new tasks can open this semaphore. The next time a task tries to open the
semaphore without the O_CREAT flag, the operation fails. The semaphore vanishes
when the last task closes it.

POSIX Named Semaphores

/* In this example, nameSem() creates a task for synchronization. The
* new task, tSyncSemTask, blocks on the semaphore created in nameSem().
* Once the synchronization takes place, both tasks close the semaphore,
* and nameSem() unlinks it. To run this task from the shell, spawn
* nameSem as a task:

* ->spnameSem, "'myTest"

*

/*includes */

#include "vxWorks.h"

#include "semaphore.h"

#include "fcntl.h"

/* forward declaration */
int syncSemTask (char * name);

int nameSem

char * name

)

sem_t * semld;

[* create a named semaphore, initialize to 0*/

printf ("nameSem: creating semaphore\n");

if ((semld = sem_open (name, O_CREAT, 0, 0)) == (sem_t *) -1)

printf ("nameSem: sem_open failed\n");
return;

}
printf ("nameSem: spawning sync task\n");

taskSpawn ("tSyncSemTask", 90, 0, 2000, syncSemTask, name);

72

/* do something useful to synchronize with syncSemTask */

* give semaphore */
printf ("nameSem: posting semaphore - synchronizing action\n");
if (sem_post (semld) ==-1)

printf ("nameSem: sem_post failed\n");
return;

}

[* all done */
if (sem_close (semld) == -1)

printf ("nameSem: sem_close failed\n");
return;

}
if (sem_unlink (name) == -1)
printf ("nameSem: sem_unlink failed\n");

return;

}

printf ("nameSem: closed and unlinked semaphore\n“);

}

int syncSemTask

char * name

)
sem_t* semld;

/* open semaphore */
printf ("syncSemTask: opening semaphore\n");
if ((semld = sem_open (name, 0)) == (sem_t *) -1)

printf ("syncSemTask: sem_open failed\n");
return;

}

* block waiting for synchronization from nameSem */
printf ("syncSemTask: attempting to take semaphore...\n");
if (sem_wait (semld) == -1)

printf ("syncSemTask: taking sem failed\n");
return;

}
printf ("syncSemTask: has semaphore, doing sync'ed action ...\n");
/* do something useful here */

if (sem_close (semld) == -1)

printf ("syncSemTask: sem_close failed\n");
return;

}

2
Basic OS

73

VxWorks 5.3.1
Programmer’s Guide

2.4.4 Message Queues

Figure 2-14

Modern real-time applications are constructed as a set of independent but
cooperating tasks. While semaphores provide a high-speed mechanism for the
synchronization and interlocking of tasks, often a higher-level mechanism is
necessary to allow cooperating tasks to communicate with each other. In VxWorks,
the primary intertask communication mechanism within a single CPU is message
queues. The optional product, VXMP, provides global message queues that can be
used across processors; for more information, see 6. Shared-Memory Objects.

Message queues allow a variable number of messages, each of variable length, to
be queued. Any task or ISR can send messages to a message queue. Any task can
receive messages from a message queue. Multiple tasks can send to and receive
from the same message queue. Full-duplex communication between two tasks
generally requires two message queues, one for each direction; see Figure 2-14.

Full Duplex Communication Using Message Queues

message queue 1

’ message|

message| »/

message queue 2

There are two message-queue subroutine libraries in VxWorks. The first of these,
msgQLib, provides Wind message queues, designed expressly for VxWorks; the
second, mgPxL.ib, is compatible with the POSIX standard (1003.1b) for real-time
extensions. See Comparison of POSIX and Wind Message Queues, p.86 for a
discussion of the differences between the two message-queue designs.

74

2
Basic OS

Wind Message Queues

Table 2-17

Timeouts

Wind message queues are created and deleted with the routines shown in

Table 2-17. This library provides messages that are queued in FIFO order, with a
single exception: there are two priority levels, and messages marked as high
priority are attached to the head of the queue.

Wind Message Queue Control

Call Description

msgQCreate() Allocate and initialize a message queue.
msgQDelete() Terminate and free a message queue.
msgQSend() Send a message to a message queue.
msgQReceive() Receive a message from a message queue.

A message queue is created with msgQCreate(). Its parameters specify the
maximum number of messages that can be queued in the message queue and the
maximum length in bytes of each message. Enough buffer space is preallocated for
the specified number and length of messages.

A task or ISR sends a message to a message queue with msgQSend(). If no tasks
are waiting for messages on that queue, the message is added to the queue’s buffer
of messages. If any tasks are already waiting for a message from that message
gueue, the message is immediately delivered to the first waiting task.

A task receives a message from a message queue with msgQReceive(). If messages
are already available in the message queue’s buffer, the first message is
immediately dequeued and returned to the caller. If no messages are available,
then the calling task blocks and is added to a queue of tasks waiting for messages.
This queue of waiting tasks can be ordered either by task priority or FIFO, as
specified in an option parameter when the queue is created.

Both msgQSend() and msgQReceive() take timeout parameters. When sending a
message, the timeout specifies how many ticks to wait for buffer space to become
available, if no space is available to queue the message. When receiving a message,
the timeout specifies how many ticks to wait for a message to become available, if
no message is immediately available. As with semaphores, the value of the timeout
parameter can have the special values of NO_WAIT (0), meaning always return
immediately, or WAIT_FOREVER (-1), meaning never time out the routine.

75

VxWorks 5.3.1
Programmer’s Guide

Urgent Messages

Example 2-8

The msgQSend() function allows specification of the priority of the message as
either normal (MSG_PRI_NORMAL) or urgent (MSG_PRI_URGENT). Normal
priority messages are added to the tail of the list of queued messages, while urgent
priority messages are added to the head of the list.

Wind Message Queues

/* In this example, task t1 creates the message queue and sends a message
* to task t2. Task t2 receives the message from the queue and simply
* displays the message.
*

[* includes */
#include "vxWorks.h"
#include "msgQLib.h"

[* defines */
#define MAX_MSGS (10)
#define MAX_MSG_LEN (100)

MSG_Q_ID myMsgQId;
task2 (void)

{
char msgBuffMAX_MSG_LEN];

* get message from queue; if necessary wait until msg is available */
if (msgQReceive(myMsgQld, msgBuf, MAX_MSG_LEN, WAIT_FOREVER) == ERROR)
return (ERROR);

[* display message */
printf ("Message from task 1:\n%s\n", msgBuf);

#define MESSAGE "Greetings from Task 1"
taskl (void)

[* create message queue */

if ((MyMsgQId = msgQCreate (MAX_MSGS, MAX_MSG_LEN, MSG_Q_PRIORITY))
== NULL)
return (ERROR);

/* send a normal priority message, blocking if queue is full */
if (msgQSend (myMsgQIld, MESSAGE, sizeof (MESSAGE), WAIT_FOREVER,
MSG_PRI_NORMAL) == ERROR)
return (ERROR);

76

2
Basic OS

POSIX Message Queues

Table 2-18

The POSIX message queue routines, provided by mgPxLib, are shown in
Table 2-18. These routines are similar to Wind message queues, except that POSIX
message queues provide named queues and messages with a range of priorities.

POSIX Message Queue Routines

Call Description

mgPxLiblInit() Initialize the POSIX message queue library (non-POSIX).
mq_open() Open a message queue.

mq_close() Close a message queue.

mq_unlink() Remove a message queue.

mq_send() Send a message to a queue.

maq_receive() Get a message from a queue.

mg_notify() Signal a task that a message is waiting on a queue.
mq_setattr() Set a queue attribute.

mq_getattr() Get a queue attribute.

The initialization routine mgPxLiblInit() makes the POSIX message queue
routines available; the system initialization code must call it before any tasks use
POSIX message queues. As shipped, usrinit() calls mgPxLiblInit() when
INCLUDE_POSIX_MQ is defined in configAll.h.

Before a set of tasks can communicate through a POSIX message queue, one of the
tasks must create the message queue by calling mg_open() with the O_CREAT flag
set. Once a message queue is created, other tasks can open that queue by name to
send and receive messages on it. Only the first task opens the queue with the
O_CREAT flag; subsequent tasks can open the queue for receiving only
(O_RDONLY), sending only (O_WRONLY), or both sending and receiving
(O_RDWR).

To put messages on a queue, use mg_send(). If a task attempts to put a message on
the queue when the queue is full, the task blocks until some other task reads a
message from the queue, making space available. To avoid blocking on mg_send(),
set O_NONBLOCK when you open the message queue. In that case, when the

77

Example 2-9

VxWorks 5.3.1
Programmer’s Guide

gueue is full, mg_send() returns -1 and sets errno to EAGAIN instead of pending,
allowing you to try again or take other action as appropriate.

One of the arguments to mq_send() specifies a message priority. Priorities range
from 0 (lowest priority) to 31 (highest priority).

When a task receives a message using mq_receive(), the task receives the highest-
priority message currently on the queue. Among multiple messages with the same
priority, the first message placed on the queue is the first received (FIFO order). If
the queue is empty, the task blocks until a message is placed on the queue. To avoid
pending on mq_receive(), open the message queue with O_NONBLOCK; in that
case, when a task attempts to read from an empty queue, mqg_receive() returns -1
and sets errno to EAGAIN.

To close a message queue, call mg_close(). Closing the queue does not destroy it,
but only asserts that your task is no longer using the queue. To request that the
gueue be destroyed, call mg_unlink(). Unlinking a message queue does not destroy
the queue immediately, but it does prevent any further tasks from opening that
gueue, by removing the queue name from the name table. Tasks that currently
have the queue open can continue to use it. When the last task closes an unlinked
gueue, the queue is destroyed.

POSIX Message Queues

/* In this example, the mgExInit() routine spawns two tasks that
* communicate using the message queue.
*

/* mgEx.h - message example header */

* defines */
#define MQ_NAME "exampleMessageQueue”

[* forward declarations */
void receiveTask (void);
void sendTask (void);

/* testMQ.c - example using POSIX message queues */

[* includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"
#include "mgEx.h"

[* defines */

#define HI_PRIO 31
#define MSG_SIZE 16

78

2
Basic OS

int mgExInit (void)

[* create two tasks */
if (taskSpawn ("tRcvTask", 95, 0, 4000, receiveTask, 0, 0, 0, O,
0,0,0,0,0, 0) == ERROR)

{

printf ("taskSpawn of tRcvTask failed\n");
return (ERROR);

}

if (taskSpawn ("tSndTask", 100, 0, 4000, sendTask, 0, 0, 0, 0,
0,0,0,0,0,0)== ERROR)

{
printf (“taskSpawn of tSendTask failed\n");
return (ERROR);

}
void receiveTask (void)

mqd_t mqPXid; /* msg queue descriptor */
char msg[MSG_SIZE]; /* msg buffer */
int prio; [* priority of message */

[* open message queue using default attributes */

if ((mgPXId = mg_open (MQ_NAME, O_RDWR | O_CREAT, 0, NULL))
== (mqd_t) -1)
{

printf ("receiveTask: mg_open failed\n");
return;

}

[* try reading from queue */
if (mqg_receive (mgPXIld, msg, MSG_SIZE, &prio) == -1)
{

printf ("receiveTask: mg_receive failed\n");

return;
}
else
printf ("receiveTask: Msg of priority %d received:\n\t\t%s\n",
prio, msg);
}
}

/* sendTask.c - mg sending example */

/*includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fentl.h"
#include "mgEx.h"

[* defines */

#define MSG "greetings"
#define HI_PRIO 30

79

VxWorks 5.3.1
Programmer’s Guide

void sendTask (void)
mqgd_t mgPXid; /* msg queue descriptor */

/* open msg queue; should already exist with default attributes */
if ((mgPXId = mqg_open (MQ_NAME, O_RDWR, 0, NULL)) == (mqd_t) -1)

printf ("sendTask: mqg_open failed\n");
return;

}

[* try writing to queue */
if (mg_send (mgPXld, MSG, sizeof (MSG), HI_PRIO) == -1)
{

printf ("sendTask: mg_send failed\n");
return;

}

printf ("sendTask: mg_send succeeded\n");

else

Notifying a Task that a Message is Waiting

A task can use the mq_notify() routine to request notification when a message for
itarrives atan empty queue. The advantage of this is that a task can avoid blocking
or polling to wait for a message.

The mg_notify() call specifies a signal to be sent to the task when a message is
placed on an empty queue. This mechanism uses the POSIX data-carrying
extension to signaling, which allows you, for example, to carry a queue identifier
with the signal (see POSIX Queued Signals, p.92).

The mg_notify() mechanism is designed to alert the task only for new messages
that are actually available. If the message queue already contains messages, no
notification is sent when more messages arrive. If there is another task that is
blocked on the queue with mq_receive(), that other task unblocks, and no
notification is sent to the task registered with mq_notify().

Notification is exclusive to a single task: each queue can register only one task for
notification at atime. Once a queue has a task to notify, no attempts to register with
mq_notify() can succeed until the notification request is satisfied or cancelled.

Once a queue sends notification to a task, the notification request is satisfied, and
the queue has no further special relationship with that particular task; that is, the
gueue sends a notification signal only once per mq_notify() request. To arrange for
one particular task to continue receiving notification signals, the best approach is
to call mg_notify() from the same signal handler that receives the notification
signals. This reinstalls the notification request as soon as possible.

80

Example 2-10

2
Basic OS

To cancel a notification request, specify NULL instead of a notification signal. Only

the currently registered task can cancel its notification request.

Notifying a Task that a Message Queue is Waiting

/* In this example, a task uses mq_notify() to discover when a message
* is waiting for it on a previously empty queue.
*

/¥ includes */
#include "vxWorks.h"
#include "signal.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"

* defines */
#define QNAM ~ "PxQ1"
#define MSG_SIZE 64 /*limit on message sizes */

[* forward declarations */
static void exNotificationHandle (int, siginfo_t *, void *);
static void exMgRead (mqd_t);

!
*

* exMgNotify - example of how to use mq_notify()
*

* This routine illustrates the use of mg_notify() to request notification
* via signal of new messages in a queue. To simplify the example, a
* single task both sends and receives a message.

*

int exMgNotify
char * pMess /* text for message to self */
)
{
struct mg_attr attr; /* queue attribute structure */
struct sigevent sigNotify; /* to attach notification */
struct sigaction mySigAction; /* to attach signal handler */
mqd_t exMqld; /*id of message queue */

/* Minor sanity check; avoid exceeding msg buffer */
if (MSG_SIZE <= strlen (pMess))
{

printf ("exMgNotify: message too long\n");
return (-1);

/* Install signal handler for the notify signal - fill in a

* sigaction structure and pass it to sigaction(). Because the
* handler needs the siginfo structure as an argument, the

* SA_SIGINFO flag is set in sa_flags.

*

81

VxWorks 5.3.1
Programmer’s Guide

82

mySigAction.sa_sigaction = exNotificationHandle;
mySigAction.sa_flags = SA_SIGINFO;
sigemptyset (&mySigAction.sa_mask);

if (sigaction (SIGUSR1, &mySigAction, NULL) == -1)

printf ("sigaction failed\n");
return (-1);

/* Create a message queue - fill in a mg_attr structure with the
* size and no. of messages required, and pass it to mq_open().
*

attr.mq_flags = O_NONBLOCK; /* make nonblocking */
attr.mg_maxmsg = 2;

attr.mq_msgsize = MSG_SIZE;

if ((exMgld = mq_open (QNAM, O_CREAT | O_RDWR, 0, &attr)) ==

(mqd_t)-1)

printf ("mg_open failed\n");
return (-1);

[* Set up natification: fill in a sigevent structure and pass it

* to mq_notify(). The queue ID is passed as an argument to the
* signal handler.

*

sigNotify.sigev_signo = SIGUSR1;

sigNotify.sigev_notify = SIGEV_SIGNAL;
sigNotify.sigev_value.sival_int = (int) exMq|d;

if (mq_notify (exMqld, &sigNotify) == -1)

printf ("mg_notify failed\n");
return (-1);

/* We just created the message queue, but it may not be empty;
* a higher-priority task may have placed a message there while
* we were requesting notification. mqg_notify() does nothing if
* messages are already in the queue; therefore we try to
* retrieve any messages already in the queue.

*

exMgRead (exMqld);

/* Now we know the queue is empty, so we will receive a signal
* the next time a message arrives.
*

* We send a message, which causes the notify handler to be
* invoked. It is a little silly to have the task that gets the

* notification be the one that puts the messages on the queue,
* but we do it here to simplify the example.

*

* A real application would do other work instead at this point.
*

2
Basic OS

if (mg_send (exMqld, pMess, 1 + strlen (pMess), 0) == -1)
{
printf ("mg_send failed\n");
return (-1);

* Cleanup */

if (mqg_close (exMgld) ==-1)
{
printf ("mg_close failed\n");
return (-1);

/* More cleanup */

if (mg_unlink (QNAM) == -1)
{
printf ("mg_unlink failed\n");

return (-1);

return (0);

!
*

* exNotificationHandle - handler to read in messages
*

* This routine is a signal handler; it reads in messages from a message

* queue.
*
static void exNotificationHandle
(
int sig, [* signal number */

siginfo_t * pinfo, /* signal information */
void * pSigContext /* unused (required by posix) */

{

struct sigevent sigNotify;
maqd_t exMgqld;

/* Get the Id of the message queue out of the siginfo structure.
*
exMgld = (mqd_t) pinfo->si_value.sival_int;

/* Request notification again; it resets each time a notification
* signal goes out.

*

sigNotify.sigev_signo = pInfo->si_signo;
sigNotify.sigev_value = pinfo->si_value;
sigNotify.sigev_notify = SIGEV_SIGNAL;

if (mq_notify (exMqld, &sigNotify) == -1)

printf ("mg_notify failed\n");

83

VxWorks 5.3.1
Programmer’s Guide

return;

}
/* Read in the messages
*
exMqgRead (exMgld);
}

I
*

* exMgRead - read in messages
*

* This small utility routine receives and displays all messages
* currently in a POSIX message queue; assumes queue has O_NONBLOCK.
*

static void exMgRead

(
maqd_t exMgld

)

{
char msg[MSG_SIZE];
int prio;

/* Read in the messages - uses a loop to read in the messages

* because a notification is sent ONLY when a message is sent on

*an EMPTY message queue. There could be multiple msgs if, for

* example, a higher-priority task was sending them. Because the

* message queue was opened with the O_NONBLOCK flag, eventually
* this loop exits with errno set to EAGAIN (meaning we did an

* mq_receive() on an empty message queue).

*

while (mg_receive (exMqgld, msg, MSG_SIZE, &prio) !=-1)

printf ("exMgRead: received message: %s\n",msg);

if (errno = EAGAIN)
{
printf ("mg_receive: errno = %d\n", errno);

}

Message Queue Attributes

A POSIX message queue has the following attributes:

— anoptional O_NONBLOCK flag

— the maximum number of messages in the message queue
— the maximum message size

— the number of messages currently on the queue

Tasks can set or clear the O_NONBLOCK flag (but not the other attributes) using
mq_setattr(), and get the values of all the attributes using mq_getattr().

84

Example 2-11

2
Basic OS

Setting and Getting Message Queue Attributes

[* This example sets the O_NONBLOCK flag, and examines message queue
* attributes.
*

[* includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"

[* defines */
#define MSG_SIZE 16

int attrEx
char * name
)
{ .
maqd_t mgPXid; /* mq descriptor */
struct mg_attr attr; [* queue attribute structure */
struct mg_attr oldAttr; /* old queue attributes */
char bufferlMSG_SIZE];
int prio;

[* create read write queue that is blocking */

attr.mq_flags = 0;

attr.mg_maxmsg = 1;

attr.mq_msgsize = 16;

if ((mgPXId = mqg_open (name, O_CREAT | O_RDWR, 0, &attr))
== (mqd_t) -1)
return (ERROR);

else
printf ("mg_open with non-block succeeded\n");

/* change attributes on queue - turn on non-blocking */
attr.mq_flags = O_NONBLOCK;
if (mq_setattr (mgPXId, &attr, &oldAttr) == -1)
return (ERROR);
else

[* paranoia check - oldAttr should not include non-blocking.
*
if (oldAttr.mq_flags & O_NONBLOCK)
return (ERROR);
else
printf ("mg_setattr turning on non-blocking succeeded\n");

[* try receiving - there are no messages but this shouldn't block */
if (mqg_receive (mgPXIld, buffer, MSG_SIZE, &prio) == -1)
{

if (errno = EAGAIN)
return (ERROR);
else
printf ("mg_receive with non-blocking didn’t block on empty queue\n”);

85

VxWorks 5.3.1
Programmer’s Guide

else
return (ERROR);

[* use mq_getattr to verify success */
if (mq_getattr (mgPXIld, &oldAttr) == -1)

return (ERROR);
else

/* test that we got the values we think we should */
if ({(oldAttr.mq_flags & O_NONBLOCK) || (oldAttr.mg_curmsgs != 0))

return (ERROR);

else

printf ("queue attributes are:\n\tblocking is %s\n\t

message size is: %d\n\t
max messages in queue: %d\n\t

no. of current msgs in queue: %d\n",

oldAttr.mq_flags & O_NONBLOCK ? "on" : "off",

oldAttr.mq_msgsize, oldAttr.mg_maxmsg,

oldAttr.mq_curmsgs);

}

/* clean up - close and unlink mq */

if (mg_unlink (name) == -1)

return (ERROR);

if (mg_close (mgPXId) == -1)

return (ERROR);

return (OK);
}

Comparison of POSIX and Wind Message Queues

Table 2-19

The two forms of message queues solve many of the same problems, but there are
some significant differences. Table 2-19 summarizes the main differences between
the two forms of message queues.

Message Queue Feature Comparison

Feature

Wind Message Queues

POSIX Message Queues

Message Priority Levels
Blocked Task Queues
Receive with Timeout
Task Notification

Close/Unlink Semantics

1

FIFO or priority-based
Optional

Not available

No

32

Priority-based

Not available
Optional (one task)

Yes

86

2
Basic OS

Another feature of POSIX message queues is, of course, portability: if you are
migrating to VxWorks from another 1003.1b-compliant system, using POSIX

message queues enables you to leave that part of the code unchanged, reducing the
porting effort.

Displaying Message Queue Attributes

The VxWorks show() command produces a display of the key message queue
attributes, for either kind of message queue3. For example, if mgPXId is a POSIX
message queue;

-> show mgPXId
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

Message queue name - MyQueue
No. of messages in queue :1
Maximum no. of messages : 16
Maximum message size : 16

Compare this to the output when myMsgQId is a Wind message queue:4

-> show myMsgQId

Message Queue Id : 0x3adaf0
Task Queuing : FIFO
Message Byte Len : 4
Messages Max : 30
Messages Queued : 14
Receivers Blocked : 0

Send timeouts : 0

Receive timeouts : 0

Servers and Clients with Message Queues

Real-time systems are often structured using a client-server model of tasks. In this
model, server tasks accept requests from client tasks to perform some service, and
usually return a reply. The requests and replies are usually made in the form of
intertask messages. In VxWorks, message queues or pipes (see 2.4.5 Pipes, p.88) are
a natural way to implement this.

3. However, to get information on POSIX message queues, INCLUDE_SHOW_ROUTINES
must be defined in the VxWorks configuration; for information, see 8. Configuration.

4. The built-in show() routine handles Wind message queues; see the Tornado User’s Guide:
Shell for information on built-in routines. You can also use the Tornado browser to get infor-
mation on Wind message queues; see the Tornado User’s Guide: Browser for details.

87

VxWorks 5.3.1
Programmer’s Guide

For example, client-server communications might be implemented as shown in
Figure 2-15. Each server task creates a message queue to receive request messages
from clients. Each client task creates a message queue to receive reply messages
from servers. Each request message includes a field containing the msgQId of the
client’s reply message queue. A server task’s “main loop” consists of reading
request messages from its request message queue, performing the request, and
sending a reply to the client’s reply message queue.

Figure 2-15 Client-Server Communications Using Message Queues

2.4.5 Pipes

reply queue 1

message

request queue

imessage,

reply queue 2

imessage,

The same architecture can be achieved with pipes instead of message queues, or by
other means that are tailored to the needs of the particular application.

Pipes provide an alternative interface to the message queue facility that goes
through the VxWorks I/0 system. Pipes are virtual /0 devices managed by the
driver pipeDrv. The routine pipeDevCreate() creates a pipe device and the
underlying message queue associated with that pipe. The call specifies the name

88

2
Basic OS

of the created pipe, the maximum number of messages that can be queued to it,
and the maximum length of each message:

status = pipeDevCreate (" /pipe/name”, max_msgs, max_length);

The created pipe is a normally named I/0 device. Tasks can use the standard 1/0
routines to open, read, and write pipes, and invoke ioctl routines. As they do with
other 1/0 devices, tasks block when they read from an empty pipe until data is
available, and block when they write to a full pipe until there is space available.
Like message queues, ISRs can write to a pipe, but cannot read from a pipe.

As 1/0 devices, pipes provide one important feature that message queues
cannot—the ability to be used with select(). This routine allows a task to wait for
data to be available on any of a set of /0 devices. The select() routine also works
with other asynchronous 1/0 devices including network sockets and serial
devices. Thus, by using select(), a task can wait for data on a combination of
several pipes, sockets, and serial devices; see 3.3.8 Pending on Multiple File
Descriptors: The Select Facility, p.117.

Pipes allow you to implement a client-server model of intertask communications;
see Servers and Clients with Message Queues, p.87.

2.4.6 Network Intertask Communication

Sockets

In VxWorks, the basis of intertask communications across the network is sockets. A
socket is an endpoint for communications between tasks; data is sent from one
socket to another. When you create a socket, you specify the Internet
communications protocol that is to transmit the data. VxWorks supports the
Internet protocols TCP and UDP. VxWorks socket facilities are source compatible
with BSD 4.3 UNIX.

TCP provides reliable, guaranteed, two-way transmission of data with stream
sockets. In a stream-socket communication, two sockets are “connected,” allowing
areliable byte-stream to flow between them in each direction as in a circuit. For this
reason TCP is often referred to as a virtual circuit protocol.

UDP provides a simpler but less robust form of communication. In UDP
communications, data is sent between sockets in separate, unconnected,
individually addressed packets called datagrams. A process creates a datagram
socket and binds it to a particular port. There is no notion of a UDP “connection.”

89

VxWorks 5.3.1
Programmer’s Guide

Any UDP socket, on any host in the network, can send messages to any other UDP
socket by specifying its Internet address and port number.

One of the biggest advantages of socket communications is that it is
“homogeneous.” Socket communications among processes are exactly the same
regardless of the location of the processes in the network, or the operating system
under which they are running. Processes can communicate within a single CPU,
across a backplane, across an Ethernet, or across any connected combination of
networks. Socket communications can occur between VxWorks tasks and host
system processes in any combination. In all cases, the communications look
identical to the application, except, of course, for their speed.

For more information, see 5.2.6 Sockets, p.251 and the reference entry for sockLib.

Remote Procedure Calls (RPC)

2.4.7 Signals

Remote Procedure Calls (RPC) is a facility that allows a process on one machine to
call a procedure that is executed by another process on either the same machine or
a remote machine. Internally, RPC uses sockets as the underlying communication
mechanism. Thus with RPC, VxWorks tasks and host system processes can invoke
routines that execute on other VxWorks or host machines, in any combination.

As discussed in the previous sections on message queues and pipes, many real-
time systems are structured with a client-server model of tasks. In this model,
client tasks request services of server tasks, and then wait for their reply. RPC
formalizes this model and provides a standard protocol for passing requests and
returning replies. Also, RPC includes tools to help generate the client interface
routines and the server skeleton.

For more information on RPC, see 5.2.8 Remote Procedure Calls, p.278.

VxWorks supports a software signal facility. Signals asynchronously alter the
control flow of a task. Any task or ISR can raise a signal for a particular task. The
task being signaled immediately suspends its current thread of execution and the
task-specified signal handler routine is executed the next time the task is scheduled
to run. Note that the signal handler gets invoked even if the task is blocked. Signals
are more appropriate for error and exception handling than as a general-purpose
intertask communication mechanism.

90

2
Basic OS

The wind kernel supports two types of signal interface: UNIX BSD-style signals
and POSIX-compatible signals. The POSIX-compatible signal interface, in turn,
includes both the fundamental signaling interface specified in the POSIX standard
1003.1, and the queued-signals extension from POSIX 1003.1b. For the sake of
simplicity, we recommend that you use only one interface type in a given
application, rather than mixing routines from different interfaces.

For more information on signals, see the reference entry for sigLib.

Basic Signal Routines

Table 2-20

Table 2-20 shows the basic signal routines. To make these facilities available, the
signal library initialization routine siglnit() must be called, normally from
usrlnit() in usrConfig.c, before interrupts are enabled.

Basic Signal Calls (BSD and POSIX 1003.1b)

POSIX 1003.1b UNIX BSD

Compatible Compatible Description

Call Call

signal() signal() Specify the handler associated with a signal.
kill() kill() Send a signal to a task.

raise() N/A Send a signal to yourself.

sigaction() sigvec() Examine or set the signal handler for a signal.
sigsuspend() pause() Suspend a task until a signal is delivered.
sigpending() N/ZA Retrieve a set of pending signals blocked from delivery.
sigemptyset() sigmask() Manipulate a signal mask.

sigfillset()

sigaddset()

sigdelset()

sigismember()

sigprocmask() sigsetmask() Set the mask of blocked signals.

sigprocmask() sigblock() Add to a set of blocked signals.

The colorful name kill() harks back to the origin of these interfaces in UNIX BSD.
Although the interfaces vary, the functionality of BSD-style signals and basic
POSIX signals is similar.

91

VxWorks 5.3.1
Programmer’s Guide

In many ways, signals are analogous to hardware interrupts. The basic signal
facility provides a set of 31 distinct signals. A signal handler binds to a particular
signal with sigvec() or sigaction() in much the same way that an ISR is connected
to an interrupt vector with intConnect(). A signal can be asserted by calling kill().
This is analogous to the occurrence of an interrupt. The routines sigsetmask() and
sigblock() or sigprocmask() let signals be selectively inhibited.

Certain signals are associated with hardware exceptions. For example, bus errors,
illegal instructions, and floating-point exceptions raise specific signals.

POSIX Queued Signals

The sigqueue() routine provides an alternative to kill() for sending signals to a
task. The important differences between the two are:

= sigqueue() includes an application-specified value that is sent as part of the
signal. You can use this value to supply whatever context your signal handler
finds useful. This value is of type sigval (defined in signal.h); the signal
handler finds it in the si_value field of one of its arguments, a structure
siginfo_t. An extension to the POSIX sigaction() routine allows you to register
signal handlers that accept this additional argument.

= sigqueue() enables the queueing of multiple signals for any task. The kill()
routine, by contrast, delivers only a single signal, even if multiple signals
arrive before the handler runs.

VxWorks includes eight signals reserved for application use, numbered
consecutively from RTSIGMIN. The presence of these eight reserved signals is
required by POSIX 1003.1b, but the specific signal values are not; for portability,
specify these signals as offsets from RTSIGMIN (for example, write RTSIGMIN+2
to refer to the third reserved signal number). All signals delivered with sigqueue()
are queued by numeric order, with lower-numbered signals queuing ahead of
higher-numbered signals.

POSIX 1003.1b also introduced an alternative means of receiving signals. The
routine sigwaitinfo() differs from sigsuspend() or pause() in that it allows your
application to respond to a signal without going through the mechanism of a
registered signal handler: when a signal is available, sigwaitinfo() returns the
value of that signal as a result, and does not invoke a signal handler even if one is
registered. The routine sigtimedwait() is similar, except that it can time out.

For detailed information on signals, see the reference entry for sigLib.

92

2
Basic OS

Table 2-21 POSIX 1003.1b Queued Signal Calls

Call Description

sigqueue() Send a queued signal.
sigwaitinfo() Wait for a signal.

sigtimedwait() Wait for a signal with a timeout.

Signal Configuration

The basic signal facility is included in VxWorks by default with
INCLUDE_SIGNALS (defined in configAll.h).

Before your application can use POSIX queued signals, they must be initialized
separately with sigqueuelnit(). Like the basic signals initialization function
siglnit(), this function is normally called from usrlnit() in usrConfig.c, after
syslnit() runs.

To initialize the queued signal functionality, also define
INCLUDE_POSIX_SIGNALS in configAll.h: with that definition, sigqueuelnit() is
called automatically.

The constant NUM_SIGNAL_QUEUES in configAll.h specifies the number of
signals that can be simultaneously queued for a specific task. The routine
sigqueuelnit() allocates that number of buffers for use by sigqueue(), which
requires a buffer for each currently queued signal. A call to sigqueue() fails if no
buffer is available.

2.5 Interrupt Service Code

Hardware interrupt handling is of key significance in real-time systems, because it
is usually through interrupts that the system is informed of external events. For the
fastest possible response to interrupts, interrupt service routines (ISRs) in VxWorks
run in a special context outside of any task’s context. Thus, interrupt handling
involves no task context switch. The interrupt routines, listed in Table 2-22, are
provided in intLib and intArchLib.

93

VxWorks 5.3.1
Programmer’s Guide

Table 2-22 Interrupt Routines

Call Description

intConnect() Connect a C routine to an interrupt vector.
intContext() Return TRUE if called from interrupt level.
intCount() Get the current interrupt nesting depth.
intLevelSet() Set the processor interrupt mask level.
intLock() Disable interrupts.

intUnlock() Re-enable interrupts.

intVecBaseSet() Set the vector base address.
intVecBaseGet() Get the vector base address.

intVecSet() Set an exception vector.

intVecGet() Get an exception vector.

For boards with an MMU, the optional product VXVMI provides write protection
for the interrupt vector table; see 7. Virtual Memory Interface.

2.5.1 Connecting Application Code to Interrupts

You can use system hardware interrupts other than those used by VxWorks.
VxWorks provides the routine intConnect(), which allows C functions to be
connected to any interrupt. The arguments to this routine are the byte offset of the
interrupt vector to connect to, the address of the C function to be connected, and
an argument to pass to the function. When an interrupt occurs with a vector
established in this way, the connected C function is called at interrupt level with
the specified argument. When the interrupt handling is finished, the connected
function returns. A routine connected to an interrupt in this way is called an
interrupt service routine (ISR).

Interrupts cannot actually vector directly to C functions. Instead, intConnect()
builds a small amount of code that saves the necessary registers, sets up a stack
entry (either on a special interrupt stack, or on the current task’s stack) with the
argument to be passed, and calls the connected function. On return from the
function it restores the registers and stack, and exits the interrupt; see Figure 2-16.

94

2

Basic OS
Figure 2-16 Routine Built by intConnect()
Wrapper built by intConnect() Interrupt Service Routine
save registers mylSl(?
set up stack int val;
invoke routine |
restore registers and stack /* deal with hardware®/
exit)

intConnect (INUM_TO_IVEC (somelntNum), myISR, someVal);

For target boards with VME backplanes, the BSP provides two standard routines
for controlling VME bus interrupts, sysintEnable() and sysintDisable().

2.5.2 Interrupt Stack

Whenever the architecture allows it, all ISRs use the same interrupt stack. This stack
is allocated and initialized by the system at start-up according to specified
configuration parameters. It must be large enough to handle the worst possible
combination of nested interrupts.

Some architectures, however, do not permit using a separate interrupt stack. On

such architectures, ISRs use the stack of the interrupted task. If you have such an
architecture, you must create tasks with enough stack space to handle the worst

possible combination of nested interrupts and the worst possible combination of

ordinary nested calls. See the reference entry for your BSP to determine whether
your architecture supports a separate interrupt stack.

Use the checkStack() facility during development to see how close your tasks and
ISRs have come to exhausting the available stack space.

2.5.3 Special Limitations of ISRs

Many VxWorks facilities are available to ISRs, but there are some important
limitations. These limitations stem from the fact that an ISR does not run in a
regular task context: it has no task control block, for example, and all ISRs share a
single stack.

95

VxWorks 5.3.1
Programmer’s Guide

Table 2-23 Routines that Can Be Called by Interrupt Service Routines

Library Routines
bLib All routines
errnoLib errnoGet(), errnoSet()

fppArchLib fppSave(), fppRestore()

intLib intContext(), intCount(), intVecSet(), intVecGet()

intArchLib intLock(), intUnlock()

logLib logMsg()

IstLib All routines except IstFree()

mathALib All routines, if fppSave()/fppRestore() are used

msgQLib msgQSend()

pipeDrv write()

rngLib All routines except rngCreate() and rngDelete()

selectLib selWakeup(), selWakeupAll()

semLib semGive() except mutual-exclusion semaphores, semFlush()

sigLib kill()

taskLib taskSuspend(), taskResume(), taskPrioritySet(), taskPriorityGet(),
taskldVerify(), taskldDefault(), tasklsReady(), tasklsSuspended(),
taskTcb()

tickLib tickAnnounce(), tickSet(), tickGet()

tyLib tylIRd(), tylTx()

vxLib vxTas(), vxMemProbe()

wdLib wadStart(), wdCancel()

For this reason, the basic restriction on ISRs is that they must not invoke routines
that might cause the caller to block. For example, they must not try to take a
semaphore, because if the semaphore is unavailable, the kernel tries to switch the
caller to the pended state. However, ISRs can give semaphores, releasing any tasks
waiting on them.

Because the memory facilities malloc() and free() take a semaphore, they cannot
be called by ISRs, and neither can routines that make calls to malloc() and free().
For example, ISRs cannot call any creation or deletion routines.

96

2
Basic OS

ISRs also must not perform 1/0 through VxWorks drivers. Although there are no
inherent restrictions in the 1/0 system, most device drivers require a task context
because they might block the caller to wait for the device. An important exception
is the VxWorks pipe driver, which is designed to permit writes by ISRs.

VxWorks supplies a logging facility, in which a logging task prints text messages
to the system console. This mechanism was specifically designed so that ISRs
could use it, and is the most common way to print messages from ISRs. For more
information, see the reference entry for logLib.

An ISR also must not call routines that use a floating-point coprocessor. In
VxWorks, the interrupt driver code created by intConnect() does not save and
restore floating-point registers; thus, ISRs must not include floating-point
instructions. If an ISR requires floating-point instructions, it must explicitly save
and restore the registers of the floating-point coprocessor using routines in
fppArchLib.

All VxWorks utility libraries, such as the linked-list and ring-buffer libraries, can
be used by ISRs. As discussed earlier (2.3.7 Task Error Status: errno, p.45), the global
variable errno is saved and restored as a part of the interrupt enter and exit code
generated by the intConnect() facility. Thus errno can be referenced and modified

by ISRs as in any other code. Table 2-23 lists routines that can be called from ISRs.

2.5.4 Exceptions at Interrupt Level

When a task causes a hardware exception such as illegal instruction or bus error,
the task is suspended and the rest of the system continues uninterrupted.
However, when an ISR causes such an exception, there is no safe recourse for the
system to handle the exception. The ISR has no context that can be suspended.
Instead, VxWorks stores the description of the exception in a special location in low
memory and executes a system restart.

The VxWorks boot ROMs test for the presence of the exception description in low
memory and if it is detected, display it on the system console. The e command in
the boot ROMs re-displays the exception description; see the Tornado User’s Guide:
Getting Started.

One example of such an exception is the message:
workQPanic: Kernel work queue overflow.

This exception usually occurs when kernel calls are made from interrupt level at a
very high rate. It generally indicates a problem with clearing the interrupt signal
or a similar driver problem.

97

VxWorks 5.3.1
Programmer’s Guide

2.5.5 Reserving High Interrupt Levels

The VxWorks interrupt support described earlier in this section is acceptable for
most applications. However, on occasion, low-level control is required for events
such as critical motion control or system failure response. In such cases it is
desirable to reserve the highest interrupt levels to ensure zero-latency response to
these events. To achieve zero-latency response, VxWorks provides the routine
intLockLevelSet(), which sets the system-wide interrupt-lockout level to the
specified level. If you do not specify a level, the default is the highest level
supported by the processor architecture.

A NOTE: Some hardware prevents masking certain interrupt levels; check the
hardware manufacturer’s documentation. For example, on MC680x0 chips,
interrupt level 7 is non-maskable. Because level 7 is also the highest interrupt level
on this architecture, VxWorks uses 7 as the default lockout level—but this is in fact
equivalent to a lockout level of 6, since the hardware prevents locking out level 7.

2.5.6 Additional Restrictions for ISRs at High Interrupt Levels

ISRs connected to interrupt levels that are not locked out (either an interrupt level
higher than that set by intLockLevelSet(), or an interrupt level defined in
hardware as non-maskable) have special restrictions:

The ISR can be connected only with intVecSet().

The ISR cannot use any VxWorks operating system facilities that depend on
interrupt locks for correct operation.

2.5.7 Interrupt-to-Task Communication

While it is important that VxWorks support direct connection of ISRs that run at
interrupt level, interrupt events usually propagate to task-level code. Many
VxWorks facilities are not available to interrupt-level code, including 170 to any
device other than pipes. The following techniques can be used to communicate
from ISRs to task-level code:

Shared Memory and Ring Buffers. ISRs can share variables, buffers, and ring
buffers with task-level code.

» Semaphores. ISRs can give semaphores (except for mutual-exclusion
semaphores and VXMP shared semaphores) that tasks can take and wait for.

98

2
Basic OS

Message Queues. ISRs can send messages to message queues for tasks to
receive (except for shared message queues using VXMP). If the queue is full,
the message is discarded.

Pipes. ISRscan write messages to pipes that tasks can read. Tasks and ISRs can
write to the same pipes. However, if the pipe is full, the message written is
discarded because the ISR cannot block. ISRs must not invoke any 1/0 routine
on pipes other than write().

Signals. ISRs can “signal” tasks, causing asynchronous scheduling of their
signal handlers.

2.6 Watchdog Timers

Table 2-24

VxWorks includes a watchdog-timer mechanism that allows any C function to be
connected to a specified time delay. Watchdog timers are maintained as part of the
system clock ISR. Normally, functions invoked by watchdog timers execute as
interrupt service code at the interrupt level of the system clock. However, if the
kernel is unable to execute the function immediately for any reason (such as a
previous interrupt or kernel state), the function is placed on the tExcTask work
gueue. Functions on the tExcTask work queue execute at the priority level of the
tExcTask (usually 0). Restrictions on ISRs apply to routines connected to watchdog
timers. The functions in Table 2-24 are provided by the wdLib library.

Watchdog Timer Calls

Call Description

wdCreate() Allocate and initialize a watchdog timer.
wdDelete() Terminate and deallocate a watchdog timer.
wadStart() Start a watchdog timer.

wdCancel() Cancel a currently counting watchdog timer.

A watchdog timer is first created by calling wdCreate(). Then the timer can be
started by calling wdStart(), which takes as arguments the number of ticks to
delay, the C function to call, and an argument to be passed to that function. After
the specified number of ticks have elapsed, the function is called with the specified

99

VxWorks 5.3.1
Programmer’s Guide

argument. The watchdog timer can be canceled any time before the delay has
elapsed by calling wdCancel().

Example 2-12 Watchdog Timers

[* This example creates a watchdog timer and sets it to go off in
* 3 seconds.
*/

/¥ includes */

#include "vxWorks.h"
#include "logLib.h"
#include "wdLib.h"

[* defines */
#define SECONDS (3)

WDOG_ID myWatchDogld;
task (void)

[* Create watchdog */

if ((myWatchDogld = wdCreate()) == NULL)
return (ERROR);

/* Set timer to go off in SECONDS - printing a message to stdout */

if (wdStart (myWatchDogld, sysClkRateGet() * SECONDS, logMsg,
"Watchdog timer just expired\n") == ERROR)
return (ERROR);

I
}

2.7 POSIX Clocks and Timers

A clock is a software construct (struct timespec, defined in time.h) that keeps time
in seconds and nanoseconds. The software clock is updated by system-clock ticks.
VxWorks provides a POSIX 1003.1b standard clock and timer interface.

The POSIX standard provides for identifying multiple virtual clocks, but only one
clock is required—the system-wide real-time clock, identified in the clock and
timer routines as CLOCK_REALTIME (also defined in time.h). VxWorks provides
routines to access the system-wide real-time clock; see the reference entry for
clockLib. (No virtual clocks are supported in VxWorks.)

100

2
Basic OS

The POSIX timer facility provides routines for tasks to signal themselves at some
time in the future. Routines are provided to create, set, and delete a timer; see the
reference entry for timerLib. When a timer goes off, the default signal (SIGALRM)
is sent to the task. Use sigaction() to install a signal handler that executes when the
timer expires (see 2.4.7 Signals, p.90).

Example 2-13 POSIX Timers
[* This example creates a new timer and stores it in timerid. */
/*includes */
#include "vxWorks.h"
#include "time.h"
int createTimer (void)
timer_t timerid;
[* create timer */
if (timer_create (CLOCK_REALTIME, NULL, &timerid) == ERROR)
printf ("create FAILED\n");
return (ERROR);
}
return (OK);

An additional POSIX function, nanosleep(), allows specification of sleep or delay
time in units of seconds and nanoseconds, as opposed to the ticks used by the
Wind taskDelay() function. Only the units are different, however, not the
precision: both delay routines have the same precision, determined by the system
clock rate.

2.8 POSIX Memory-Locking Interface

Many operating systems perform memory paging and swapping. These techniques
allow the use of more virtual memory than there is physical memory on a system,
by copying blocks of memory out to disk and back. These techniques impose
severe and unpredictable delays in execution time; they are therefore undesirable
in real-time systems.

101

Table 2-25

VxWorks 5.3.1
Programmer’s Guide

Because the wind kernel is designed specifically for real-time applications, it never
performs paging or swapping. However, the POSIX 1003.1b standard for real-time
extensions also covers operating systems that perform paging or swapping. On
such systems, applications that attempt real-time performance can use the POSIX
page-locking facilities to declare that certain blocks of memory must not be paged
or swapped.

To help maximize portability, VxWorks includes the POSIX page-locking routines.
Executing these routines makes no difference in VxWorks, because all memory is,
in effect, always locked. They are included only to make it easier to port programs
between other POSIX-conforming systems and VxWorks.

The POSIX page-locking routines are in mmanPxLib (the name reflects the fact
that these routines are part of the POSIX “memory-management” routines).
Because in VxWorks all pages are always kept in memory, the routines listed in
Table 2-25 always return a value of OK (0), and have no further effect.

The mmanPxLib library is included automatically when the configuration
constant INCLUDE_POSIX_MEM is defined in configAll.h.

POSIX Memory Management Calls

Call Purpose on Systems with Paging or Swapping
mlockall() Lock into memory all pages used by a task.
munlockall() Unlock all pages used by a task.

mlock() Lock a specified page.

munlock() Unlock a specified page.

102

3.1

3.2

3.3

3.4

/O System

([ge o [UTox 110] o TR TR PP 109
Files, DEVICES, N0 DIIVEIS .uuvuivieiiiiiiiiieiee e e ee e e st et e e e s e s e s e e e eeeeserenanas 109
3.2.1 File Names and the Default DEVICEccocovereriiineiciceiee 111
BASIC /O ittt a e 112
3.3, 1 File DESCIIPLONS ...ttt 113
3.3.2 Standard Input, Standard Output, and Standard Error 113

Global REdITreCtioN ..o 113

Task-Specific RedireCtion ... 114
3.3.3 0PN AN ClOSEcouiiiiiiieieese e 114
3.3.4 Create and REMOVEcccociiiiiiiiinenie st 115
3.35 Read and WIIEccooiiiiieiisese e 116
3.3.6 File TruNCatioNcccoiiiiiiiece e 116
337 IO CONIOL .. 117
3.3.8 Pending on Multiple File Descriptors: The Select Facility 117
BUffered 1/O: SEAIO ..vvvieiiiii i 120
K3 Ot A U [~ o T S (o T TSR 120
3.4.2 Standard Input, Standard Output, and Standard Error 121

103

3.5

3.6

3.7

VxWorks 5.3.1
Programmer’s Guide

Other FOrmatted I/O ...eiiiiiiieeie e 121
3.5.1 Special Cases: printf(), sprintf(), and sscanf()c.cccooererenne. 121
3.5.2 Additional Routines: printErr() and fdprintf()cccconiiennne. 122
RS TC TN |V/ (=151 To T3 0T o 1 o o RSSO 122
AsYNChronous INPUI/OULPUL .oeveeiiieiiecie ettt 122
3.6.1 The POSIX AlIO ROULINESccceiiiiiiieieiceiesee e 123
3.6.2 AIO CoNtrol BIOCKcooviiiiiiiiiiini e 124
3.6.3 USING ALO .o s 125

AIlO with Periodic Checks for Completionc.cccccooeieniiinnnnee 126

Alternatives for Testing AIO Completionc.cccoiiieniicienee 128
DEVICES IN VXWOIKS .ottt 131

3.7.1 Serial 170 Devices (Terminal and Pseudo-Terminal Devices) 131

TEY OPLIONS ..o bbb 132
Raw Mode and Line MOdeccccooiiiniiiiiiiene e 132
Tty Special CharaCters ... 133
170 Control FUNCLIONSc.oiviiiiiiiiciec s 134
3.7.2 PIPE DBVICES ..ottt e 135
Creating PIPES ..o e s 135
Writing to Pipes from ISRS ... 135
170 Control FUNCLIONSccoiviiiiiicc s 136
3.7.3 Pseudo Memory DEVICESccccvcveviiierie e 136
Installing the Memory DIiVErccccccoviiiieiiiiese e 136
170 Control FUNCLIONSc.oiviiiiiicicie e 137
3.7.4 Network File System (NFS) DeVICESc.cccvevvvviviieiieieseere e 137
Mounting a Remote NFS File System from VxWorks 137
170 Control Functions for NFS Clientsccccocvviiiiencicne, 138
3.7.5 NON-NFS Network DEVICESccccoreieiiieiiiieie e 138
Creating NetwOrk DeVICEScccvcvvviieiiiiicse e 139
170 Control FUNCLIONSooovviiiiiiiicece s 140
3.7.6 BIOCK DEVICESocuiiiiiiiiiiiiiiie ettt 140

104

3.8

3.9

3

I/O System
FIle SYSIEMS ..o s 140
RAM DiSK DFIVEIS ..ot 140
SCSI DIIVELS .ottt et 141
BTT SOCKELS .ottt 152
Differences Between VxWorks and Host System 1/0ccovvivivenvcinineeniesnn, 152
INEMNAI STIUCLUIE oottt b et te e et s 153
301 DIIVEIS ettt bbbt ettt 155
The Driver Table and Installing Driversc.ccccccvvviviiiiiciineinens 156
Example of Installing @ DIiVercccccooiiniiiiineeieeceeeis 157
3.9.2 DRBVICES ..ottt bbbttt 158
The Device List and Adding DeVICEScccccvevviviiiiicieiieiie e 158
Example of Adding DEVICESccccoviiiiiiiiiiiie e 158
3.9.3 File DESCIIPLONS ...ttt 159
The FA Table ... 160
Example of Opening a File ... 160
Example of Reading Data from the File ... 163
Example of Closing a File ... 163
Implementing SEIECT()cooo i 163
Cache CONEBIENCYocvveiicicccce e 168
3.9.4 BIOCK DBVICES ..ottt 171
General Implementation ... 171
Low-Level Driver Initialization ROULINEcccccoeviiiiiiciie 173
Device Creation ROUTINEccocoiiiiiiiiiieese e 174
Read Routine (Direct-Access DeVICES)cccccvevvvvveievieieieerie e 176
Read Routine (Sequential DeVICES)ccoovverirerenieieieieieeeeeins 177
Write Routine (Direct-Access DeVICeS)cccccvvevviieiecieieeie e 178
Write Routine (Sequential Devices)cccovvineneneneieieee 178
170 Control ROULINEoovoiiiiiiiceee s 179
Device-ReSet ROULINEcccoviiiiiiiiiiec e 180
Status-Check ROULINE ... 180
Wrrite-Protected Media ..o 181
Change in Ready StatusSccccceviiieiiiecic e 181
Write-File-Marks Routine (Sequential Devices)ccccoceeveennene 182
Rewind Routine (Sequential DeVICeS)ccocerererieiieieiieieieieeins 182
Reserve Routine (Sequential DEVICES)cccocvrererieiieieieieieieeias 183

105

VxWorks 5.3.1

Programmer’s Guide

Release Routine (Sequential DeViCes)c.ccocveniniieneneicieeas 183

Read-Block-Limits Routine (Sequential DeVvices)c.ccoceveeneneee 183

Load/Unload Routine (Sequential DeVvices)ccccocerereicreenne 184

Space Routine (Sequential DeVices)cccocvvvenieieienene e 185

Erase Routine (Sequential Devices)ccccoovininiinenenencnieenns 185
3.9.5 Driver SUPPOIt LIDIari€sccccocooireieiiiiiiiene s 186

List of Tables

Table 3-1 BasiC I/0 ROULINEScooieiiieieere e 112
Table 3-2 File ACCESS FIagSoovviiiiiiiiiiecreeeee s 114
Table 3-3 SEIECt MACIOScviiiiicc e 118
Table 3-4 Asynchronous Input/Output ROULINEScccoevvreenns 123
Table 3-5 AIO Initialization Functions and Related Constants 124
Table 3-6 Drivers Provided with VXWOrKSc..cccovovvvnienencene, 131
Table 3-7 TEY OPLIONS oo 132
Table 3-8 Tty Special CharacCterscoccovveieiinienece e 134
Table 3-9 170 Control Functions Supported by tyLib 135
Table 3-10 170 Control Functions Supported by pipeDrv 136
Table 3-11 170 Control Functions Supported by memDrv 137
Table 3-12 170 Control Functions Supported by nfsDrv 139
Table 3-13 SCSI CONSLANTS ... 142
Table 3-14 Fields in the BLK_DEV Structurecccococeevvnvinnnenn. 175
Table 3-15 Fields in the SEQ_DEV Structureccoceovervvnvcnnnenn. 175
Table 3-16 VxWorks Driver Support ROUtINESc.ccovvevienieninen. 186

106

List of Figures

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8

List of Examples

Example 3-1
Example 3-2
Example 3-3
Example 3-4
Example 3-5

Example 3-6
Example 3-7

Example 3-8
Example 3-9
Example 3-10
Example 3-11
Example 3-12

3

I/O System

Overview of the VXWorks I/0 Systemccccoceevreenne. 110
Example — Driver Initialization for Non-Block Devices 157
Example — Addition of Devices to I/0 System 159
Example: Call to 170 Routine open() [Part1] 161
Example: Call to 170 Routine open() [Part 2] 162
Example: Call to 170 Routine read()ccocovevrviireinnnenn 164
Cache CONEIENCYcoociiiiicice e 168
Non-Block Devices vs. Block DeVvicescccccocevereeienenne. 172
The Select FaCilitycccovvivieiiieece e 118
ASYNChronoUS 170 ... 126
Asynchronous 170 with Signalsccccevviviiiiciiees 128
Configuring SCSI DIIVErSccccovceeeieie e 147
Configuring a SCSI Disk Drive with Asynchronous Data

Transfer and No Tagged Command Queuing 148
Working with Tape DevViCeSccccvverenineneneeieeeene 149
Configuring a SCSI Disk for Synchronous Data Transfer with
Non-Default Offset and Period Valuesccccceevenne. 150
Changing the Bus ID of the SCSI Controller 150
Hypothetical DriVer ... 154
Driver Code Using the Select Facilitycc.cccocveveiiinnnns 166
DMA Transfer ROULINEccccooviiiininineneceeeeeee 169
Address-Translation DriVer ..., 170

107

3
I/O System

3.1 Introduction

The VxWorks 1/0 system is designed to present a simple, uniform, device-
independent interface to any kind of device, including:

— character-oriented devices such as terminals or communications lines
— random-access block devices such as disks

— virtual devices such as intertask pipes and sockets

— monitor and control devices such as digital/analog 170 devices

— network devices that give access to remote devices

The VxWorks I/0 system provides standard C libraries for both basic and buffered
I/70. The basic 1/0 libraries are UNIX-compatible; the buffered 1/0 libraries are
ANSI C-compatible. Internally, the VxWorks 1/0 system has a unique design that
makes it faster and more flexible than most other 1/0 systems. These are important
attributes in a real-time system.

This chapter first describes the nature of files and devices, and the user view of basic
and buffered 1/0. The middle section discusses the details of some specific
devices. The final section is a detailed discussion of the internal structure of the
VxWorks 1/0 system.

Figure 3-1 diagrams the relationships between the different pieces of the VxWorks
170 system. All the elements of the 1/0 system are discussed in this chapter, except
for file system routines, which are presented in 4. Local File Systems in this manual.

3.2 Files, Devices, and Drivers

In VxWorks, applications access 1/0 devices by opening named files. A file can
refer to one of two things:

109

Figure 3-1

VxWorks 5.3.1
Programmer’s Guide

Overview of the VxWorks I/O System

Application

v

Al

Basic I/0 Routines

read()
write()

(device independent)

N T

Buffered I/O: stdio

fread()
fwrite()

!

v

\
Driver Routines

xxRead()
xxWrite()

xxRead()
xXWrite()

v

\
Hardware Devices

Network
Disk Drive
Serial Device

Library Routines

tyLib

fioLib
fioRead()

printf()
sprintf()

/

_. File System Routines

N

An unstructured “raw” device such as a serial communications channel or an

intertask pipe.

A logical file on a structured, random-access device containing a file system.

Consider the following named files:

/usr/myfile

Ipipe/mypipe

/tyCol/0

The first refers to a file called myfile, on a disk device called /usr. The second is a
named pipe (by convention, pipe names begin with /pipe). The third refers to a
physical serial channel. However, 1/0 can be done to or from any of these in the
same way. Within VxWorks, they are all called files, even though they refer to very
different physical objects.

Devices are handled by program modules called drivers. In general, using the 1/0
system does not require any further understanding of the implementation of

110

3
I/O System

devices and drivers. Note, however, that the VxWorks 1/0 system gives drivers
considerable flexibility in the way they handle each specific device. Drivers strive
to follow the conventional user view presented here, but can differ in the specifics.
See 3.7 Devices in VxWorks, p.131.

Although all 170 is directed at named files, it can be done at two different levels:
basic and buffered. The two differ in the way data is buffered and in the types of calls
that can be made. These two levels are discussed in later sections.

3.2.1 File Names and the Default Device

A file name is specified as a character string. An unstructured device is specified
with the device name. In the case of file system devices, the device name is
followed by a file name. Thus the name /tyCo/0 might name a particular serial 1/0
channel, and the name DEV1:/filel probably indicates the file filel on the DEV1.
device.

When a file name is specified in an 170 call, the /0 system searches for a device
with a name that matches at least an initial substring of the file name. The 1/0
function is then directed at this device.

If a matching device name cannot be found, then the 1/0 function is directed at a
default device. You can set this default device to be any device in the system,
including no device at all, in which case failure to match a device name returns an
error.

Non-block devices are named when they are added to the 170 system, usually at
system initialization time. Block devices are named when they are initialized for
use with a specific file system. The VxWorks 1/0 system imposes no restrictions on
the names given to devices. The I/0 system does not interpret device or file names
in any way, other than during the search for matching device and file names.

It is useful to adopt some naming conventions for device and file names: most
device names begin with a slash (/), except non-NFS network devices and
VxWorks DOS devices (dosFs).

By convention, NFS-based network devices are mounted with names that begin
with a slash. For example:

usr

Non-NFS network devices are named with the remote machine name followed by
a colon. For example:

host:

111

VxWorks 5.3.1
Programmer’s Guide

The remainder of the name is the file name in the remote directory on the remote
system.

File system devices using dosFs are often named with uppercase letters and/or
digits followed by a colon. For example:

DEV1:

File names and directory names on dosFs devices are often separated by
backslashes (\). These can be used interchangeably with forward slashes (/).

A NOTE: Because device names are recognized by the 1/0 system using simple
substring matching, a slash (/) should not be used alone as a device name.

3.3 Basic I/0O

Basic 1/0 is the lowest level of 1/0 in VxWorks. The basic 1/0 interface is source-
compatible with the I/0 primitives in the standard C library. There are seven basic
170 calls, shown in the following table.

Table 3-1 Basic I/O Routines

Call Description

creat() Create afile.

remove() Remove afile.

open() Open afile. (Optionally, create a file.)

close() Close afile.

read() Read a previously created or opened file.

write() Write a previously created or opened file.

ioctl() Perform special control functions on files or devices.

112

3
I/O System

3.3.1 File Descriptors

At the basic 170 level, files are referred to by a file descriptor, or fd. An fd is a small
integer returned by a call to open() or creat(). The other basic 170 calls take an fd
as a parameter to specify the intended file. An fd has no meaning discernible to the
user; it is only a handle for the 1/0 system.

When a file is opened, an fd is allocated and returned. When the file is closed, the
fd is deallocated. There are a finite number of fds available in VxWorks. To avoid
exceeding the system limit, it is important to close fds that are no longer in use. The
number of available fds is specified in the initialization of the 1/0 system.

3.3.2 Standard Input, Standard Output, and Standard Error

Three file descriptors are reserved and have special meanings:

0 = standard input
1 = standard output
2 = standard error output

These fds are never returned as the result of an open() or creat(), but serve rather
as indirect references that can be redirected to any other open fd.

These standard fds are used to make tasks and modules independent of their actual
170 assignments. If a module sends its output to standard output (fd = 1), then its
output can be redirected to any file or device, without altering the module.

VxWorks allows two levels of redirection. First, there is a global assignment of the
three standard fds. Second, individual tasks can override the global assignment of
these fds with their own assignments that apply only to that task.

Global Redirection

When VxWorks is initialized, the global assignments of the standard fds are
directed, by default, to the system console. When tasks are spawned, they initially
have no task-specific fd assignments; instead, they use the global assignments.

The global assignments can be redirected using ioGlobalStdSet(). The parameters
to this routine are the global standard fd to be redirected, and the fd to direct it to.

For example, the following call sets global standard output (fd = 1) to be the open
file with a file descriptor of fileFd:

ioGlobalStdSet (1, fileFd);

113

VxWorks 5.3.1
Programmer’s Guide

All tasks in the system that do not have their own task-specific redirection write
standard output to that file thereafter. For example, the task tRlogind calls
ioGlobalStdSet() to redirect 1/0 across the network during an rlogin session.

Task-Specific Redirection

The assignments for a specific task can be redirected using the routine
ioTaskStdSet(). The parameters to this routine are the task ID (0 = self) of the task
with the assignments to be redirected, the standard fd to be redirected, and the fd
to direct it to. For example, a task can make the following call to write standard
output to fileFd:

ioTaskStdSet (0, 1, fileFd);

All other tasks are unaffected by this redirection, and subsequent global
redirections of standard output do not affect this task.

3.3.3 Open and Close

Table 3-2

Before 1/0 can be performed to a device, an fd must be opened to that device by
invoking the open() routine (or creat(), as discussed in the next section). The
arguments to open() are the file name, the type of access, and, when necessary, the
mode:

fd=open (* name", flags, mode);

The possible access flags are shown in Table 3-2.

File Access Flags

Flag Hex Value Description

O_RDONLY 0 Open for reading only.
O_WRONLY 1 Open for writing only.
O_RDWR 2 Open for reading and writing.
O_CREAT 200 Create a new file.

O_TRUNC 400 Truncate the file.

The mode parameter is used in the following special cases to specify the mode
(permission bits) of a file or to create subdirectories:

114

3
I/O System

= Ingeneral, you can open only preexisting devices and files with open().
However, with NFS network, dosFs, and rt11Fs devices, you can also create
files with open() by or’ing O_CREAT with one of the access flags. In the case of
NFS devices, open() requires the third parameter specifying the mode of the
file:

fd=open (" name", O_CREAT|O_RDWR, 0644):

With both dosFs and NFS devices, you can use the O_CREAT option to create
a subdirectory by setting mode to FSTAT_DIR. Other uses of the mode
parameter with dosFs devices are ignored.

The open() routine, if successful, returns an fd (a small integer). This fd is then used
in subsequent 1/0 calls to specify that file. The fd is a global identifier that is not task
specific. One task can open a file, and then any other tasks can use the resulting fd
(for example, pipes). The fd remains valid until close() is invoked with that fd:

close (fd);

At that point, 170 to the file is flushed (completely written out) and the fd can no
longer be used by any task. However, the same fd number can again be assigned
by the 1/0 system in any subsequent open().

When a task exits or is deleted, the files opened by that task are not automatically
closed, because fds are not task specific. Thus, it is recommended that tasks
explicitly close all files when they are no longer required. As stated previously,
there is a limit to the number of files that can be open at one time.

3.3.4 Create and Remove

File-oriented devices must be able to create and remove files as well as open
existing files. The creat() routine directs a file-oriented device to make a new file
on the device and return a file descriptor for it. The arguments to creat() are
similar to those of open() except that the file name specifies the name of the new
file rather than an existing one; the creat() routine returns an fd identifying the
new file.

fd = creat (" name", flag);

The remove() routine removes a named file on a file-oriented device:
remove (" name");

Do not remove files while they are open.

With non-file-system oriented device names, creat() acts exactly like open();
however, remove() has no effect.

115

VxWorks 5.3.1
Programmer’s Guide

3.3.5 Read and Write

After an fd is obtained by invoking open() or creat(), tasks can read bytes from a
file with read() and write bytes to a file with write(). The arguments to read() are
the fd, the address of the buffer to receive input, and the maximum number of bytes
to read:

nBytes =read (fd, & buffer, maxBytes);

The read() routine waits for input to be available from the specified file, and
returns the number of bytes actually read. For file-system devices, if the number of
bytes read is less than the number requested, a subsequent read() returns 0 (zero),
indicating end-of-file. For non-file-system devices, the number of bytes read can be
less than the number requested even if more bytes are available; a subsequent
read() may or may not return 0. In the case of serial devices and TCP sockets,
repeated calls to read() are sometimes necessary to read a specific number of bytes.
(See the reference entry for fioRead() in fioLib). A return value of ERROR (-1)
indicates an unsuccessful read.

The arguments to write() are the fd, the address of the buffer that contains the data
to be output, and the number of bytes to be written:

actualBytes = write (fd, & buffer, nBytes);

The write() routine ensures that all specified data is at least queued for output

before returning to the caller, though the data may not yet have been written to the
device (this is driver dependent). write() returns the number of bytes written; if
the number returned is not equal to the number requested, an error has occurred.

3.3.6 File Truncation

It is sometimes convenient to discard part of the data in a file. After a file is open
for writing, you can use the ftruncate() routine to truncate a file to a specified size.
Its arguments are an fd and the desired length of the file:

status = ftruncate (fd, length);

If it succeeds in truncating the file, ftruncate() returns OK. If the size specified is
larger than the actual size of the file, or if the fd refers to a device that cannot be
truncated, ftruncate() returns ERROR, and sets errno to EINVAL.

The ftruncate() routine is part of the POSIX 1003.1b standard, but this
implementation is only partially POSIX-compliant: creation and modification
times are not updated. This call is supported only by dosFsLib, the DOS-
compatible file system library.

116

3
I/O System

3.3.7 1/0O Control

Theioctl()) routine is an open-ended mechanism for performing any 1/0 functions
that do not fit the other basic I/0 calls. Examples include determining how many
bytes are currently available for input, setting device-specific options, obtaining
information about a file system, and positioning random-access files to specific
byte positions. The arguments to the ioctl() routine are the fd, a code that identifies
the control function requested, and an optional function-dependent argument:

result = ioctl (fd, function, arg);

For example, the following call uses the FIOBAUDRATE function to set the baud
rate of a tty device to 9600:

status = ioctl (fd, FIOBAUDRATE, 9600);

The discussion of specific devices in 3.7 Devices in VxWorks, p.131 summarizes the
ioctl() functions available for each device. The ioctl() control codes are defined in
ioLib.h. For more information, see the reference entries for specific device drivers.

3.3.8 Pending on Multiple File Descriptors: The Select Facility

The VxWorks select facility provides a UNIX- and Windows-compatible method
for pending on multiple file descriptors. The library selectLib provides both task-
level support, allowing tasks to wait for multiple devices to become active, and
device driver support, giving drivers the ability to detect tasks that are pended
while waiting for 1/0 on the device. To use this facility, the header file selectLib.h
must be included in your application code.

Task-level support not only gives tasks the ability to simultaneously wait for 1/0
on multiple devices, but it also allows tasks to specify the maximum time to wait
for 1/0 to become available. For an example of using the select facility to pend on
multiple file descriptors, consider a client-server model in which the server is
servicing both local and remote clients. The server task uses a pipe to communicate
with local clients and a socket to communicate with remote clients. The server task
must respond to clients as quickly as possible. If the server blocks waiting for a
request on only one of the communication streams, it cannot service requests that
come in on the other stream until it gets a request on the first stream. For example,
if the server blocks waiting for a request to arrive in the socket, it cannot service
requests that arrive in the pipe until a request arrives in the socket to unblock it.
This can delay local tasks waiting to get their requests serviced. The select facility
solves this problem by giving the server task the ability to monitor both the socket
and the pipe and service requests as they come in, regardless of the communication
stream used.

117

Table 3-3

Example 3-1

VxWorks 5.3.1
Programmer’s Guide

Tasks can block until data becomes available or the device is ready for writing. The
select() routine returns when one or more file descriptors are ready or a timeout
has occurred. Using the select() routine, a task specifies the file descriptors on
which to wait for activity. Bit fields are used in the select() call to specify the read
and write file descriptors of interest. When select() returns, the bit fields are
modified to reflect the file descriptors that have become available. The macros for
building and manipulating these bit fields are listed in Table 3-3.

Select Macros

Macro Function

FD_ZERO Zeros all bits.

FD_SET Sets bit corresponding to a specified file descriptor.
FD_CLR Clears a specified bit.

FD_ISSET Returns 1 if specified bit is set, otherwise returns 0.

Applications can use select() with any character 1/0 devices that provide support
for this facility (for example, pipes, serial devices, and sockets). For information on
writing a device driver that supports select(), see Implementing select(), p.163.

The Select Facility

[* selServer.c - select example

* |n this example, a server task uses two pipes: one for normal-priority
* requests, the other for high-priority requests. The server opens both
* pipes and blocks while waiting for data to be available in at least one
* of the pipes.

*

#include "vxWorks.h"
#include "selectLib.h"
#include "fcntl.h"

#define MAX_FDS 2

#define MAX_DATA 1024

#define PIPEHI "/pipe/highPriority"
#define PIPENORM "/pipe/normalPriority"

!
* selServer - reads data as it becomes available from two different pipes
*

* Opens two pipe fds, reading from whichever becomes available. The

* server code assumes the pipes have been created from either another
* task or the shell. To test this code from the shell do the following:

* ->1d < selServer.o

* -> pipeDevCreate ("/pipe/highPriority", 5, 1024)

118

3
I/O System

-> pipeDevCreate ("/pipe/normalPriority", 5, 1024)

-> fdHi = open ("/pipe/highPriority", 1, 0)

-> fdNorm = open ("/pipe/normalPriority", 1, 0)

-> josFdShow

-> sp selServer

* >

* At this point you should see selServer’s state as pended. You can now
* write to either pipe to make the selServer display your message.
* ->write fdNorm, "Howdy", 6

* ->write fdHi, "Urgent", 7

*

ok ok Ok Ok

STATUS selServer (void)
struct fd_set readFds; /* bit mask of fds to read from */
int fds[MAX_FDS]; [* array of fds on which to pend */
int width; /* number of fds on which to pend */
int i; [* index for fd array */

char buffer[]MAX_DATA]; /* buffer for data that is read */

/* open file descriptors */

if ((fds[0] = open (PIPEHI, O_RDONLY, 0)) == ERROR)
return (ERROR);

if ((fds[1] = open (PIPENORM, O_RDONLY, 0)) == ERROR)
return (ERROR);

/* loop forever reading data and servicing clients */
FOREVER

[* clear bits in read bit mask */
FD_ZERO (&readFds);

* initialize bit mask */

FD_SET (fds[0], &readFds);

FD_SET (fds[1], &readFds);

width = (fds[0] > fds[1]) ? fds[0] : fds[1];
width++;

/* pend, waiting for one or more fds to become ready */
if (select (width, &readFds, NULL, NULL, NULL) == ERROR)
return (ERROR);

[* step through array and read from fds that are ready */
for (i=0; i< MAX_FDS; i++)

{
[* check if this fd has data to read */
if (FD_ISSET (fds[i], &readFds))

/* typically read from fd now that it is ready */

read (fds[i], buffer, MAX_DATA);

I* normally service request, for this example print it */

printf ("SELSERVER Reading from %s: %s\n",
(i==0) ? PIPEHI : PIPENORM, buffer);

119

VxWorks 5.3.1
Programmer’s Guide

3.4 Buffered I/O: Stdio

The VxWorks I/0 library provides a buffered 1/0 package that is compatible with
the UNIX and Windows stdio package and provides full ANSI C support. To
include the stdio package in the VxWorks system, define INCLUDE_ANSI_STDIO
in configAll.h.

Note that the implementation of printf(), sprintf(), and sscanf(), traditionally
considered part of the stdio package, is part of a different package in VxWorks.
These routines are discussed in 3.5 Other Formatted /O, p.121.

3.4.1 Using Stdio

Although the VxWorks 1/0 system is efficient, some overhead is associated with
each low-level call. First, the 170 system must dispatch from the device-
independent user call (read(), write(), and so on) to the driver-specific routine for
that function. Second, most drivers invoke a mutual exclusion or queuing
mechanism to prevent simultaneous requests by multiple users from interfering
with each other.

Because the VxWorks primitives are fast, this overhead is quite small. However, an
application processing a single character at a time from a file incurs that overhead
for each character if it reads each character with a separate read() call:

n=read(fd, & char, 1);

To make this type of 1/0 more efficient and flexible, the stdio package implements
a buffering scheme in which data is read and written in large chunks and buffered
privately. This buffering is transparent to the application; it is handled
automatically by the stdio routines and macros. To access a file with stdio, a file is
opened with fopen() instead of open() (many stdio calls begin with the letter f):

fp = fopen ("/usr/foo", "r");

The returned value, a file pointer (or fp) is a handle for the opened file and its
associated buffers and pointers. An fp is actually a pointer to the associated data
structure of type FILE (that is, it is declared as FILE *). By contrast, the low-level /0
routines identify a file with a file descriptor (fd), which is a small integer. In fact, the
FILE structure pointed to by the fp contains the underlying fd of the open file.

An already open fd can be associated belatedly with a FILE buffer by calling
fdopen():

fp =fdopen(fd,"r);

120

3
I/O System

After a file is opened with fopen(), data can be read with fread(), or a character at
a time with getc(), and data can be written with fwrite(), or a character at a time
with putc().

The routines and macros to get data into or out of a file are extremely efficient. They
access the buffer with direct pointers that are incremented as data is read or written
by the user. They pause to call the low-level read or write routines only when a
read buffer is empty or a write buffer is full.

A WARNING: The stdio buffers and pointers are private to a particular task. They are
not interlocked with semaphores or any other mutual exclusion mechanism,
because this defeats the point of an efficient private buffering scheme. Therefore,

multiple tasks must not perform 1/0 to the same stdio FILE pointer at the same
time.

3.4.2 Standard Input, Standard Output, and Standard Error

As discussed earlier in 3.3 Basic I/0O, p.112, there are three special file descriptors (0,
1, and 2) reserved for standard input, standard output, and standard error. There
are three corresponding stdio FILE buffers that are automatically created when
required; they are then associated with those file descriptors: stdin, stdout, and
stderr. These can be used to do buffered 1/0 to the standard fds.

3.5 Other Formatted I/0O

3.5.1 Special Cases: printf(), sprintf(), and sscanf()

The routines printf(), sprintf(), and sscanf() are generally considered to be part of
the standard stdio package. However, the VxWorks implementation of these
routines, while functionally the same, does not use the stdio package. Instead, it
uses a self-contained, formatted, non-buffered interface to the 1/0 system in the
library fioLib. Note that these routines provide the functionality specified by
ANSI; however, printf() is not buffered.

Because these routines are implemented in this way, the full stdio package, which
is optional, can be omitted from a VxWorks configuration without sacrificing their

121

VxWorks 5.3.1
Programmer’s Guide

availability. Applications requiring printf-style output that is buffered can still
accomplish this by calling fprintf() explicitly to stdout.

While sscanf() is implemented in fioLib and can be used even if stdio is omitted,
the same is not true of scanf(), which is implemented in the usual way in stdio.

3.5.2 Additional Routines: printErr() and fdprintf()

Additional routines in fioLib provide formatted but unbuffered output. The
routine printErr() is analogous to printf() but outputs formatted strings to the
standard error fd (2). The routine fdprintf() outputs formatted strings to a
specified fd.

3.5.3 Message Logging

Another higher-level 1/0 facility is provided by the library logLib, which allows
formatted messages to be logged without having to do 170 in the current task’s
context, or when there is no task context. The message format and parameters are
sent on a message queue to a logging task, which then formats and outputs the
message. This is useful when messages must be logged from interrupt level, or
when it is desirable not to delay the current task for 1/0 or use the current task’s
stack for message formatting (which can take up significant stack space). The
message is displayed on the console unless otherwise redirected at system startup
using loglnit() or dynamically using logFdSet().

3.6 Asynchronous Input/Output

Asynchronous Input/Output (AlO) is the ability to perform input and output
operations concurrently with ordinary internal processing. AlO enables you to
decouple 1/0 operations from the activities of a particular task when these are
logically independent.

The benefit of AlO is greater processing efficiency: it permits 1/0 operations to
take place whenever resources are available, rather than making them await
arbitrary events such as the completion of independent operations. AlO eliminates
some of the unnecessary blocking of tasks that is caused by ordinary synchronous

122

3
I/O System

1/0; this decreases contention for resources between input/output and internal
processing, and expedites throughput.

The VxWorks AlO implementation meets the specification in the POSIX 1003.1b
standard. To include AIO in your VxWorks configuration, define
INCLUDE_POSIX_AIO and INCLUDE_POSIX_AIO_SYSDRV in configAll.h. The
second configuration constant enables the auxiliary AlO system driver, required
for asynchronous 1/0 on all current VxWorks devices.

3.6.1 The POSIX AlO Routines

Table 3-4

The VxWorks library aioPxLib provides the POSIX AIO routines. To access a file
asynchronously, open it with the open() routine, like any other file. Thereafter, use
the file descriptor returned by open() in calls to the AlO routines. The POSIX AIO
routines (and two associated non-POSIX routines) are listed in Table 3-4.

Asynchronous Input/Output Routines

Function Description

aioPxLiblnit() Initialize the AlO library (non-POSIX).

aioShow() Display the outstanding AlO requests (non-POSIX)."
aio_read() Initiate an asynchronous read operation.

aio_write() Initiate an asynchronous write operation.

aio_listio() Initiate a list of up to LIO_MAX asynchronous 1/0 requests.
aio_error() Retrieve the error status of an AlO operation.

aio_return() Retrieve the return status of a completed AlO operation.
aio_cancel() Cancel a previously submitted AIO operation.

aio_suspend() Wait until an AlO operation is done, interrupted, or timed out.

* This function is not built into the Tornado shell. To use it from the Tornado
shell, you must define INCLUDE_SHOW_ROUTINES in your VxWorks
configuration; see 8. Configuration in this manual. When you invoke the
function, its output is sent to the standard output device.

The default VxWorks initialization code calls aioPxLiblInit() automatically when
INCLUDE_POSIX_AIO is defined in configAll.h. This routine takes one parameter,
the maximum number of lio_listio() calls that can be outstanding at one time. By

123

VxWorks 5.3.1
Programmer’s Guide

default this parameter is MAX_LIO_CALLS (defined in configAll.h). When the
parameter is 0, the default value is taken from AIO_CLUST_MAX (defined in
h/private/aioPxLibP.h).

The AIO system driver, aioSysDry, is initialized by default with the routine
aioSyslnit() when both INCLUDE_POSIX_AIO and
INCLUDE_POSIX_AIO_SYSDRYV are defined. The purpose of aioSysDrvV is to
provide request queues independent of any particular device driver, so that you
can use any VxWorks device driver with AlO.

The routine aioSysInit() takes three parameters: the number of AlO system tasks
to spawn, and the priority and stack size for these system tasks. The number of
AIO system tasks spawned equals the number of AlO requests that can be handled
in parallel. The default initialization call uses three constants, all defined in
configAll.h:

aioSyslInit(MAX_AIO_SYS_TASKS, AIO_TASK_PRIORITY, AIO_TASK_STACK_SIZE)
When any of the parameters passed to aioSyslInit() is 0, the corresponding value

is taken from AIO_1O_TASKS_DFLT, AIO_IO_PRIO_DFLT, and
AIO_IO_STACK_DFLT (all defined in h/aioSysDrv.h).

Table 3-5 lists the names of the constants defined in configAll.h for initialization
routines called from usrConfig.c. It also shows the constants used within
initialization routines when the parameters are 0, and where these constants are
defined.

Table 3-5 AIO Initialization Functions and Related Constants

::nlijtri;':éltiizoa:]tion configAll.h Constant VZTJé lljse:éisvrhljrl]ea(r:;r:\séant VZ?Jé Header File

aioPxLiblInit() MAX_LIO_CALLS 0 AIO_CLUST_MAX 100 h/private/aioPxLibP.h

aioSyslnit() MAX_AIO_SYS TASKS 0 AIO_ IO _TASKS DFLT 2 h/aioSysDrv.h
AIO_TASK_PRIORITY 0 AIO_IO_PRIO_DFLT 50 h/aioSysDrv.h

AIO_TASK_STACK_SIZE 0 AIO_IO_STACK_DFLT 0x7000 h/aioSysDrv.h

3.6.2 AlO Control Block

Each of the AlO calls takes an AlO control block (aiocb) as an argument to describe
the AIO operation. The calling routine must allocate space for the control block,
which is associated with a single AlO operation. No two concurrent AIO

124

3
I/O System

operations can use the same control block; an attempt to do so yields undefined
results.

The aiocb and the data buffers it references are used by the system while
performing the associated request. Therefore, after you request an AlO operation,
you must not modify the corresponding aiocb before calling aio_return(); this
function frees the aiocb for modification or reuse.

A NOTE: If a routine allocates stack space for the aiocb, that routine must call
aio_return() to free the aiocb before returning.

The aiocb structure is defined in aio.h. It contains the following fields:

aio_fildes file descriptor for 1/0

aio_offset offset from the beginning of the file

aio_buf address of the buffer from/to which AIO is requested
aio_nbytes number of bytes to read or write

aio_reqgprio priority reduction for this AlO request

aio_sigevent signal to return on completion of an operation (optional)

aio_lio_opcode operation to be performed by a lio_listio() call
aio_sys VxWorks-specific data (non-POSIX)

For full definitions and important additional information, see the reference entry
for aioPxLib.

3.6.3 Using AlO

The routines aio_read(), aio_write(), or lio_listio() initiate AlO operations. The
last of these, lio_listio(), allows you to submit a number of asynchronous requests
(read and/or write) at one time. In general, the actual 1/0 (reads and writes)
initiated by these routines does not happen immediately after the AlO request. For
that reason, their return values do not reflect the outcome of the actual 1/0
operation, but only whether a request is successful—that is, whether the AIO
routine is able to put the operation on a queue for eventual execution.

After the I/0 operations themselves execute, they also generate return values that
reflect the success or failure of the I/0. There are two routines that you can use to
get information about the success or failure of the 1/0 operation: aio_error() and
aio_return(). You can use aio_error() to get the status of an AlO operation

125

AlO with Periodic

Example 3-2

VxWorks 5.3.1
Programmer’s Guide

(success, failure, or in progress), and aio_return() to obtain the return values from
the individual 1/0 operations. Until an AlO operation completes, its error status
is EINPROGRESS. To cancel an AlO operation, call aio_cancel().

Checks for Completion

The following code uses a pipe for the asynchronous I/0 operations. The example
creates the pipe, submits an AlO read request, verifies that the read request is still
in progress, and submits an AlO write request. Under normal circumstances, a
synchronous read to an empty pipe blocks and the task does not execute the write,
but in the case of AlO, we initiate the read request and continue. After the write
request is submitted, the example task loops, checking the status of the AIO
requests periodically until both the read and write complete. Because the AIO
control blocks are on the stack, we must call aio_return() before returning from
aioExample().

Asynchronous 1/0

[* aioEx.c - example code for using asynchronous I/O */
/¥ includes */

#include "vxWorks.h"

#include "aio.h"

#include "errno.h"

[* defines */

#define BUFFER_SIZE 200

I
*

* aioExample - use AlO library

*

* This example shows the basic functions of the AIO library.
*

* RETURNS: OK if successful, otherwise ERROR.
*
/

STATUS aioExample (void)

{

int fd;

static char exFile [] = "/pipe/1stPipe";

struct aiocb aioch_read; /* read aiocb */

struct aiocb aioch_write; /* write aiocb */

static char * test_string = "testing 1 2 3";

char buffer [BUFFER_SIZE]; /* buffer for read aiocb */

pipeDevCreate (exFile, 50, 100);

126

3
I/O System

if (fd = open (exFile, O_CREAT | O_TRUNC | O_RDWR, 0666)) ==
ERROR)

printf (“aioExample: cannot open %s errno 0x%x\n", exFile, errno);
return (ERROR);
}

printf ("aioExample: Example file = %s\tFile descriptor = %d\n",
exFile, fd);

/* initialize read and write aiocbs */

bzero ((char *) &aioch_read, sizeof (struct aioch));
bzero ((char *) buffer, sizeof (buffer));
aiocb_read.aio_fildes = fd;

aiocb_read.aio_buf = buffer;
aiocb_read.aio_nbytes = BUFFER_SIZE;
aiocb_read.aio_reqprio = 0;

bzero ((char *) &aiocb_write, sizeof (struct aiocb));
aiocb_write.aio_fildes = fd;

aiocb_write.aio_buf = test_string;
aiocb_write.aio_nbytes = strlen (test_string);
aiocb_write.aio_reqprio = 0;

/* initiate the read */
if (aio_read (&aiocb_read) == -1)
printf ("aioExample: aio_read failed\n");

[* verify that it is in progress */
if (aio_error (&aiocb_read) == EINPROGRESS)
printf ("aioExample: read is still in progress\n®);

[* write to pipe - the read should be able to complete */
printf (“aioExample: getting ready to initiate the write\n");
if (aio_write (&aiocb_write) == -1)

printf ("aioExample: aio_write failed\n");

/* wait til both read and write are complete */
while ((aio_error (&aiocb_read) == EINPROGRESS) ||
(aio_error (&aioch_write) == EINPROGRESS))
taskDelay (1);

/* print out what was read */
printf ("aioExample: message = %s\n", buffer);

/* clean up */
if (aio_return (&aiocb_read) == -1)

printf ("aioExample: aio_return for aiocb_read failed\n");
if (aio_return (&aiocb_write) == -1)

printf ("aioExample: aio_return for aiocb_write failed\n");

close (fd);
return (OK);
}

127

VxWorks 5.3.1
Programmer’s Guide

Alternatives for Testing AIO Completion

Example 3-3

A task can determine whether an AlO request is complete in any of the following
ways:

= Check the result of aio_error() periodically, as in the previous example, until
the status of an AlO request is no longer EINPROGRESS.

= Use aio_suspend() to suspend the task until the AlO request is complete.
= Use signals to be informed when the AIO request is complete.

The following example is similar to the preceding aioExample(), except that it uses
signals to be notified when the write is complete. If you test this from the shell,
spawn the routine to run at a lower priority than the AlO system tasks to assure
that the test routine does not block completion of the AlO request. (For details on
the shell, see the Tornado User’s Guide: Shell.)

Asynchronous 1/O with Signals

[* aloExSig.c - example code for using signals with asynchronous 1/O */

/*includes */

#include "vxWorks.h"

#include "aio.h"

#include "errno.h"

* defines */

#define BUFFER_SIZE 200

#define LIST_SIZE 1

#define EXAMPLE_SIG_NO 25 /* signal number */

[* forward declarations */

void mySigHandler (int sig, struct siginfo * info, void * pContext);

I
*

* aioExampleSig - use AlO library.

* This example shows the basic functions of the AIO library.
* Note if this is run from the shell it must be spawned. Use:
* ->sp aioExampleSig

*

* RETURNS: OK if successful, otherwise ERROR.

*

/

STATUS aioExampleSig (void)

{
int fd;

128

3
I/O System

static char exFile [] = "/pipe/1stPipe";

struct aioch aiocb_read; /*read aiocb */

static struct aiocb aioch_write; /* write aiocb */
struct sigaction action; [* signal info */

static char* test_string = "testing 1 2 3";

char buffer [BUFFER_SIZE]; /* aiocb read buffer */

pipeDevCreate (exFile, 50, 100);
if (fd = open (exFile, O_CREAT | O_TRUNC| O_RDWR, 0666)) == ERROR)
{

printf ("aioExample: cannot open %s errno 0x%x\n", exFile, errno);
return (ERROR);

printf (“aioExampleSig: Example file = %s\tFile descriptor = %d\n",
exFile, fd);

/* set up signal handler for EXAMPLE_SIG_NO */

action.sa_sigaction = mySigHandler;
action.sa_flags = SA_SIGINFO;

sigemptyset (&action.sa_mask);

sigaction (EXAMPLE_SIG_NO, &action, NULL);

/* initialize read and write aiocbs */

bzero ((char *) &aiocb_read, sizeof (struct aiocb));
bzero ((char *) buffer, sizeof (buffer));
aiocb_read.aio_fildes = fd;

aiocb_read.aio_buf = buffer;
aiocb_read.aio_nbytes = BUFFER_SIZE;
aiocb_read.aio_reqprio = 0;

bzero ((char *) &aioch_write, sizeof (struct aioch));
aiocb_write.aio_fildes = fd;

aiocb_write.aio_buf = test_string;
aiocb_write.aio_nbytes = strlen (test_string);
aiocb_write.aio_reqgprio = 0;

/* set up signal info */
aiocb_write.aio_sigevent.sigev_signo = EXAMPLE_SIG_NO;
aiocb_write.aio_sigevent.sigev_notify = SIGEV_SIGNAL,;
aiocb_write.aio_sigevent.sigev_value.sival_ptr =

(void *) &aioch_write;
/* initiate the read */

if (aio_read (&aiocb_read) == -1)
printf ("aioExampleSig: aio_read failed\n");

[* verify that it is in progress */

if (aio_error (&aiocb_read) == EINPROGRESS)
printf ("aioExampleSig: read is still in progress\n“);

129

VxWorks 5.3.1
Programmer’s Guide

[* write to pipe - the read should be able to complete */
printf (“aioExampleSig: getting ready to initiate the write\n");
if (aio_write (&aiocb_write) == -1)
printf ("aioExampleSig: aio_write failed\n");
/* clean up */
if (aio_return (&aiocb_read) == -1)
printf ("aioExampleSig: aio_return for aiocb_read failed\n");
else
printf ("aioExampleSig: aio read message = %s\n",
aiocbh_read.aio_buf);
close (fd);
return (OK);
void mySigHandler
(
int sig,
struct siginfo * info,
void* pContext
)
/* print out what was read */
printf (“mySigHandler: Got signal for aio write\n");
/* write is complete so let’s do cleanup for it here */

if (aio_return (info->si_value.sival_ptr) == -1)

printf ("“mySigHandler: aio_return for aiocb_write failed\n");
printErro (0);

}

130

3
I/O System

3.7 Devices in VxWorks

The VxWorks 1/0 system is flexible, allowing specific device drivers to handle the
seven 1/0 functions. All VxWorks device drivers follow the basic conventions
outlined previously, but differ in specifics; this section describes those specifics.

Table 3-6 Drivers Provided with VxWorks

Module Driver Description

ttyDrv Terminal driver

ptyDrv Pseudo-terminal driver

pipeDrv Pipe driver

memDrv Pseudo memory device driver
nfsDrv NFS client driver

netDrv Network driver for remote file access
ramDrv RAM driver for creating a RAM disk
scsiLib SCSI interface library

- Other hardware-specific drivers

3.7.1 Serial I/O Devices (Terminal and Pseudo-Terminal Devices)

VxWorks provides terminal and pseudo-terminal device drivers (tty and pty
drivers). The tty driver is for actual terminals; the pty driver is for processes that
simulate terminals. These pseudo terminals are useful in applications such as
remote login facilities.!

VxWorks serial 1/0 devices are buffered serial byte streams. Each device has a ring
buffer (circular buffer) for both input and output. Reading from a tty device
extracts bytes from the input ring. Writing to a tty device adds bytes to the output
ring. The size of each ring buffer is specified when the device is created during
system initialization.

1. For the remainder of this section, the term tty is used to indicate both tty and pty devices.

131

VxWorks 5.3.1
Programmer’s Guide

Tty Options

The tty devices have a full range of options that affect the behavior of the device.
These options are selected by setting bits in the device option word using the
ioctl() routine with the FIOSETOPTIONS function (see 1/0 Control Functions,
p.134). For example, to set all the tty options except OPT_MON_TRAP:

status = ioctl fd, FIOSETOPTIONS, OPT_TERMINAL & ~OPT_MON_TRAP);

Table 3-7 isa summary of the available options. The listed names are defined in the
header file ioLib.h. For more detailed information, see the reference entry for
tyLib.

Table 3-7 Tty Options

Library Description

OPT_LINE Select line mode. (See Raw Mode and Line Mode, p.132.)

OPT_ECHO Echo input characters to the output of the same channel.
OPT_CRMOD Translate input RETURN characters into NEWLINE (\n); translate

output NEWLINE into RETURN-LINEFEED.
OPT_TANDEM Respond to X-on/X-off protocol (CTRL+Q and CTRL+S).
OPT_7_BIT Strip the most significant bit from all input bytes.
OPT_MON_TRAP Enable the special ROM monitor trap character, CTRL+X by default.

OPT_ABORT Enable the special target shell abort character, CTRL+C by default.
(Only useful if the target shell is configured into the system; see
9. Target Shell in this manual for details.)

OPT_TERMINAL Setall of the above option bits.

OPT_RAW Set none of the above option bits.

Raw Mode and Line Mode

A tty device operates in one of two modes: raw mode (unbuffered) or line mode. Raw
mode is the default. Line mode is selected by the OPT_LINE bit of the device option
word (see Tty Options, p.132).

In raw mode, each input character is available to readers as soon as it is input from
the device. Reading from a tty device in raw mode causes as many characters as

132

3
I/O System

possible to be extracted from the input ring, up to the limit of the user’s read buffer.
Input cannot be modified except as directed by other tty option bits.

In line mode, all input characters are saved until a NEWLINE character is input; then
the entire line of characters, including the NEWLINE, is made available in the ring
at one time. Reading from a tty device in line mode causes characters up to the end
of the next line to be extracted from the input ring, up to the limit of the user’s read
buffer. Input can be modified by the special characters CTRL+H (backspace),
CTRL+U (line-delete), and CTRL+D (end-of-file), which are discussed in Tty Special
Characters, p.133.

Tty Special Characters

The following special characters are enabled if the tty device operates in line mode,
that is, with the OPT_LINE bit set:

= The backspace character, by default CTRL+H, causes successive previous
characters to be deleted from the current line, up to the start of the line. It does
this by echoing a backspace followed by a space, and then another backspace.

= The line-delete character, by default CTRL+U, deletes all the characters of the
current line.

= The end-of-file (EOF) character, by default CTRL+D, causes the current line to
become available in the input ring without a NEWLINE and without entering
the EOF character itself. Thus if the EOF character is the first character typed
on a line, reading that line returns a zero byte count, which is the usual
indication of end-of-file.

The following characters have special effects if the tty device is operating with the
corresponding option bit set:

» The flow control characters, CTRL+Q and CTRL+S, commonly known as
X-on/X-off protocol. Receipt of a CTRL+S input character suspends output to
that channel. Subsequent receipt of a CTRL+Q resumes the output. Conversely,
when the VxWorks input buffer is almost full, a CTRL+S is output to signal the
other side to suspend transmission. When the input buffer is empty enough, a
CTRL+Q is output to signal the other side to resume transmission. X-on/X-off
protocol is enabled by OPT_TANDEM.

» The ROM monitor trap character, by default CTRL+X. This character traps to the
ROM-resident monitor program. Note that this is drastic. All normal VxWorks
functioning is suspended, and the computer system is controlled entirely by
the monitor. Depending on the particular monitor, it may or may not be

133

Table 3-8

VxWorks 5.3.1
Programmer’s Guide

possible to restart VxWorks from the point of interruption. The monitor trap
character is enabled by OPT_MON_TRAP.

= The special target shell abort character, by default CTRL+C. This character
restarts the target shell if it gets stuck in an unfriendly routine, such as one that
has taken an unavailable semaphore or is caught in an infinite loop. The target
shell abort character is enabled by OPT_ABORT.

The characters for most of these functions can be changed using the tyLib routines
shown in Table 3-8.

Tty Special Characters

Character Description Modifier

CTRL+H backspace (character delete) tyBackspaceSet()
CTRL+U line delete tyDeleteLineSet()
CTRL+D EOF (end of file) tyEOFSet()
CTRL+C target shell abort tyAbortSet()
CTRL+X trap to boot ROMs tyMonitorTrapSet()
CTRL+S output suspend N/ZA

CTRL+Q output resume N/ZA

I/O Control Functions

A

The tty devices respond to the ioctl() functions in Table 3-9, defined inioLib.h. For
more information, see the reference entries for tyLib, ttyDrv, and ioctl().

NOTE: To change the driver’s hardware options (for example, the number of stop
bits or parity bits), use the ioctl() function SIO_HW_OPTS_SET. Because this
command is not implemented in most drivers, you may need to add it to your BSP
serial driver, which resides in src/drv/sio. The details of how to implement this
command depend on your board’s serial chip. The constants defined in the header
file h/sioLib.h provide the POSIX definitions for setting the hardware options.

134

Table 3-9

3

I/O System
I/O Control Functions Supported by ~ tyLib
Function Description
FIOBAUDRATE Set the baud rate to the specified argument.
FIOCANCEL Cancel a read or write.
FIOFLUSH Discard all bytes in the input and output buffers.
FIOGETNAME Get the file name of the fd.
FIOGETOPTIONS Return the current device option word.
FIONREAD Get the number of unread bytes in the input buffer.
FIONWRITE Get the number of bytes in the output buffer.
FIOSETOPTIONS Set the device option word.

3.7.2 Pipe Devices

Creating Pipes

Pipes are virtual devices by which tasks communicate with each other through the
170 system. Tasks write messages to pipes; these messages can then be read by
other tasks. Pipe devices are managed by pipeDrv and use the kernel message
gueue facility to bear the actual message traffic.

Pipes are created by calling the pipe create routine:
status = pipeDevCreate ("/pipe/name", maxMsgs, maxLength);

The new pipe can have at most maxMsgs messages queued at a time. Tasks that
write to a pipe that already has the maximum number of messages queued are
delayed until a message is dequeued. Each message in the pipe can be at most

maxLength bytes long; attempts to write longer messages result in an error.

Writing to Pipes from ISRs

VxWorks pipes are designed to allow ISRs to write to pipes in the same way as
task-level code. Many VxWorks facilities cannot be used from ISRs, including 1/0
to devices other than pipes. However, ISRs can use pipes to communicate with
tasks, which can then invoke such facilities.

135

VxWorks 5.3.1
Programmer’s Guide

ISRs write to a pipe using the write() call. Tasks and ISRs can write to the same
pipes. However, if the pipe is full, the message is discarded because the ISRs
cannot pend. ISRs must not invoke any 1/0 function on pipes other than write().

I/O Control Functions

Table 3-10

3.7.3 Pseudo

Pipe devices respond to the ioctl() functions summarized in Table 3-10. The
functions listed are defined in the header file ioLib.h. For more information, see
the reference entries for pipeDrv and for ioctl() in ioLib.

I/O Control Functions Supported by — pipeDrv

Function Description

FIOFLUSH Discard all messages in the pipe.

FIOGETNAME Get the pipe name of the fd.

FIONMSGS Get the number of messages remaining in the pipe.
FIONREAD Get the size in bytes of the first message in the pipe.
Memory Devices

The memDrv driver allows the 1/0 system to access memory directly as a pseudo-
170 device. Memory location and size are specified when the device is created.
This feature is useful when data must be preserved between boots of VxWorks or
when sharing data between CPUs. This driver does not implement a file system as
does ramDrv. The ramDrv driver must be given memory over which it has
absolute control; whereas memDrv provides a high-level method of reading and
writing bytes in absolute memory locations through 170 calls.

Installing the Memory Driver

The driver is first initialized and then the device is created:

STATUS memDrv
(void)
STATUS memDevCreate
(char * name, char * base, int length)

136

3
I/O System

Memory for the device is an absolute memory location beginning at base. The
length parameter indicates the size of the memory. For additional information on
the memory driver, see the reference entries for memDrv, memDevCreate(), and
memDrv().

I/O Control Functions

The memory driver responds to the ioctl() functions summarized in Table 3-11.
The functions listed are defined in the header file ioLib.h. For more information,
see the reference entries for memDrv and for ioctl() in ioLib.

Table 3-11 1/O Control Functions Supported by memDrv

Function Description
FIOSEEK Set the current byte offset in the file.
FIOWHERE Return the current byte position in the file.

3.7.4 Network File System (NFS) Devices

Network File System (NFS) devices allow files on remote hosts to be accessed with
the NFS protocol. The NFS protocol specifies both client software, to read files from
remote machines, and server software, to export files to remote machines.

The driver nfsDrv acts as a VxWorks NFS client to access files on any NFS server
on the network. VxWorks also allows you to run an NFS server to export files to
other systems; see Allowing Remote Access to VxWorks Files through NFS, p.288 in
this manual.

Using NFS devices, you can create, open, and access remote files exactly as though
they were on a file system on a local disk. This is called network transparency.

Mounting a Remote NFS File System from VxWorks

Access to a remote NFS file system is established by mounting that file system
locally and creating an 1/0 device for it using nfsMount(). Its arguments are

(1) the host name of the NFS server, (2) the name of the host file system, and (3) the
local name for the file system.

137

VxWorks 5.3.1
Programmer’s Guide

For example, the following call mounts /usr of the host mars as /vxusr locally:
nfsMount ("mars", "/usr", "/vxusr");

This creates a VxWorks 1/0 device with the specified local name (/vxusr, in this
example). If the local name is specified as NULL, the local name is the same as the
remote name.

After a remote file system is mounted, the files are accessed as though the file
system were local. Thus, after the previous example, opening the file /vxusr/foo
opens the file /usr/foo on the host mars.

The remote file system must be exported by the system on which it actually resides.
However, NFS servers can export only local file systems. Use the appropriate
command on the server to see which file systems are local. NFS requires
authentication parameters to identify the user making the remote access. To set
these parameters, use the routines nfsAuthUnixSet() and nfsAuthUnixPrompt().

Define INCLUDE_NFS in configAll.h to include NFS client support in your
VxWorks configuration.

The subject of exporting and mounting NFS file systems and authenticating access
permissions is discussed in more detail in Transparent Remote File Access with NFS,
p.286. See also the reference entries nfsLib and nfsDrv, and the NFS
documentation from Sun Microsystems.

I/O Control Functions for NFS Clients

NFS client devices respond to the ioctl() functions summarized in Table 3-12. The
functions listed are defined in ioLib.h. For more information, see the reference
entries for nfsDrv and for ioctl() in ioLib.

3.7.5 Non-NFS Network Devices

VxWorks also supports network access to files on the remote host through the
Remote Shell protocol (RSH) or the File Transfer Protocol (FTP). These
implementations of network devices use the driver netDrv. When a remote file is
opened using RSH or FTP, the entire file is copied into local memory. As a result,
the largest file that can be opened is restricted by the available memory. Read and
write operations are performed on the in-memory copy of the file. When closed,
the file is copied back to the original remote file if it was modified.

138

3

I/O System

Table 3-12 1/O Control Functions Supported by —nfsDrv

Function Description

FIOFSTATGET Get file status information (directory entry data).

FIOGETNAME Get the file name of the fd.

FIONREAD Get the number of unread bytes in the file.

FIOREADDIR Read the next directory entry.

FIOSEEK Set the current byte offset in the file.

FIOSYNC Flush data to a remote NFS file.

FIOWHERE Return the current byte position in the file.

In general, NFS devices are preferable to RSH and FTP devices for performance
and flexibility, because NFS does not copy the entire file into local memory.
However, NFS is not supported by all host systems.

Creating Network Devices

To access files on a remote host using either RSH or FTP, a network device must
first be created by calling the routine netDevCreate(). The arguments to
netDevCreate() are (1) the name of the device, (2) the name of the host the device
accesses, and (3) which protocol to use: 0 (RSH) or 1 (FTP).

For example, the following call creates an RSH device called mars: that accesses the
host mars. By convention, the name for a network device is the remote machine’s
name followed by a colon (:).

Files on a network device can be created, opened, and manipulated as if on a local
disk. Thus, opening the file mars:/usr/foo actually opens /usr/foo on host mars.

Note that creating a network device allows access to any file or device on the
remote system, while mounting an NFS file system allows access only to a
specified file system.

For the files of a remote host to be accessible with RSH or FTP, permissions and
user identification must be established on both the remote and local systems.
Creating and configuring network devices is discussed in detail in Transparent
Remote File Access with RSH and FTP, p.283 and in the reference entry for netDrv.

139

VxWorks 5.3.1
Programmer’s Guide

I/O Control Functions

RSH and FTP devices respond to the same ioctl() functions as NFS devices except
for FIOSYNC and FIOREADDIR. The functions are defined in the header file
ioLib.h. For more information, see the reference entries for netDrv and ioctl().

3.7.6 Block Devices

File Systems

RAM Disk Drivers

A block device is a device that is organized as a sequence of individually accessible
blocks of data. The most common type of block device is a disk. In VxWorks, the
term block refers to the smallest addressable unit on the device. For most disk
devices, a VxWorks block corresponds to a sector, although terminology varies.

Block devices in VxWorks have a slightly different interface than other I/0
devices. Rather than interacting directly with the 1/0 system, block device support
consists of low-level drivers that interact with a file system. The file system, in turn,
interacts with the 1/0 system. This arrangement allows a single low-level driver
to be used with various different file systems and reduces the number of I/0
functions that must be supported in the driver. The internal implementation of
low-level drivers for block devices is discussed in 3.9.4 Block Devices, p.171.

For use with block devices, VxWorks is supplied with file system libraries
compatible with the MS-DOS (dosFs) and RT-11 (rt11Fs) file systems. In addition,
there is a library for a simple raw disk file system (rawFs), which treats an entire
disk much like a single large file. Also supplied is a file system that supports SCSI
tape devices, which are organized so that individual blocks of data are read and
written sequentially. Use of these file systems is discussed in 4. Local File Systems in
this manual. Also see the reference entries for dosFsLib, rt11FsLib, rawFsLib, and
tapeFsLib.

RAM drivers, as implemented in ramDrv, emulate disk devices but actually keep
all data in memory. Memory location and “disk” size are specified when a RAM
device is created by calling ramDevCreate(). This routine can be called repeatedly
to create multiple RAM disks.

140

SCSI Drivers

3
I/O System

Memory for the RAM disk can be preallocated and the address passed to
ramDevCreate(), or memory can be automatically allocated from the system
memory pool using malloc().

After the device is created, a name and file system (dosFs, rt11Fs, or rawFs) must
be associated with it using the file system’s device initialization routine or file
system’s make routine, for example, dosFsDevInit() or dosFsMkfs(). Information
describing the device is passed to the file system in a BLK_DEV structure. A pointer
to this structure is returned by the RAM disk creation routine.

In the following example, a 200KB RAM disk is created with automatically
allocated memory, 512-byte sections, a single track, and no sector offset. The device
is assigned the name DEV1: and initialized for use with dosFs.

BLK_DEV *pBIkDev;
DOS_VOL_DESC *pVolDesc;
pBIkDev = ramDevCreate (0, 512, 400, 400, 0);
pVolDesc = dosFsMkfs ("DEV1:", pBlkDev);
The dosFsMkfs() routine calls dosFsDevInit() with default parameters and
initializes the file system on the disk by calling ioctl() with the FIODISKINIT.

If the RAM disk memory already contains a disk image, the first argument to
ramDevCreate() is the address in memory, and the formatting arguments must be
identical to those used when the image was created. For example:

pBIkDev = ramDevCreate (0xc0000, 512, 400, 400, 0);

pVolDesc = dosFsDevinit ("DEV1:", pBlkDev, NULL);
In this case, dosFsDevInit() must be used instead, because the file system already
exists on the disk and does not require re-initialization. This procedure is useful if
a RAM disk is to be created at the same address used in a previous boot of
VxWorks. The contents of the RAM disk are then preserved. Creating a RAM disk
with rt11Fs using rt11FsMkfs() and rt11FsDevinit() follows these same
procedures. For more information on RAM disk drivers, see the reference entry for
ramDrv. For more information on file systems, see 4. Local File Systems.

SCSI is a standard peripheral interface that allows connection with a wide variety
of hard disks, optical disks, floppy disks, and tape drives. SCSI block drivers are
compatible with the dosFs and rt11Fs libraries, and offer several advantages for
target configurations. They provide:

— local mass storage in non-networked environments
— faster 1/0 throughput than Ethernet networks

141

VxWorks 5.3.1
Programmer’s Guide

The SCSI-2 support in VxWorks supersedes previous SCSI support, although it
offers the option of configuring the original SCSI functionality, now known as
SCSI-1. With SCSI-2 enabled, the VxWorks environment can still handle SCSI-1
applications, such as file systems created under SCSI-1. However, applications that
directly used SCSI-1 data structures defined in scsiLib.h may require
modifications and recompilation for SCSI-2 compatibility.

The VxWorks SCSI implementation consists of two modules, one for the device-
independent SCSI interface and one to support a specific SCSI controller. The
scsiLib library provides routines that support the device-independent interface;
device-specific libraries provide configuration routines that support specific
controllers (for example, wd33c93Lib for the Western Digital WD33C93 device or
mb87030Lib for the Fujitsu MB87030 device). There are also additional support
routines for individual targets in sysLib.c.

Configuring SCSI Drivers

Table 3-13

Constants associated with SCSI drivers are listed in Table 3-13. Define these in
config.h.

SCSI Constants

Constant Description
INCLUDE_SCSI Include SCSI interface.
INCLUDE_SCSI2 SCSI-2 extensions.
INCLUDE_SCSI_DMA Enable DMA for SCSI.

INCLUDE_SCSI_BOOT Allow booting from a SCSI device.

SCSI_AUTO_CONFIG Auto-configure and locate all targets on a SCSI bus.
INCLUDE_DOSFS Include the DOS file system.
INCLUDE_TAPEFS Include the tape file system.

To enable SCSI functionality, define INCLUDE_SCSI in config.h. This enables SCSI-
1. To enable SCSI-2, you must define, in addition to SCSI-1, the constants
INCLUDE_SCSI2 and (if you plan to use SCSI tape support) INCLUDE_TAPEFS. To
enable automatic configuration of drivers, define SCSI_AUTO_CONFIG in
config.h.

NOTE: Including SCSI-2 in your VxWorks image can significantly increase the
image size. If you receive a warning from vxsize when building VxWorks, or if the

142

3
I/O System

size of your image becomes greater than that supported by the current setting of
RAM_HIGH_ADRS, be sure to see 8.4.1 Scaling Down VxWorks, p.447 and Creating
Bootable Applications in the Tornado User’s Guide: Cross-Development for information
on how to resolve the problem.

Configuring the SCSI Bus ID

Each board in a SCSI-2 environment must define a unique SCSI bus ID for the SCSI
initiator. SCSI-1 drivers, which support only a single initiator at a time, assume an
initiator SCSI bus ID of 7. However, SCSI-2 supports multiple initiators, up to eight
initiators and targets at one time. Therefore, to ensure a unique ID, choose a value
in the range 0-7 to be passed as a parameter to the driver’s initialization routine
(for example, ncr710CtrlInitScsi2()) by the sysScsilnit() routine in sysScsi.c. For
more information, see the reference entry for the relevant driver initialization
routine. If there are multiple boards on one SCSI bus, and all of these boards use
the same BSP, then different versions of the BSP must be compiled for each board
by assigning unique SCSI bus IDs.

ROM Size Adjustment for SCSI Boot

If INCLUDE_SCSI_BOOT is defined in config.h, larger ROMs may be required for
some boards. If this is the case, the definition of ROM_SIZE in Makefile and in
config.h should be changed to a size that suits the capabilities of the target
hardware.

Structure of the SCSI Subsystem

The SCSI subsystem supports libraries and drivers for both SCSI-1 and SCSI-2. It
consists of the following six libraries which are independent of any SCSI controller:

scsiLib routines that provide the mechanism for switching SCSI
requests to either the SCSI-1 library (scsilLib) or the SCSI-2
library (scsi2Lib), as configured by the board support

package (BSP).

scsillLib SCSI-1 library routines and interface, used when only
INCLUDE_SCSI is defined (see Configuring SCSI Drivers,
p.142.)

scsi2Lib SCSI-2 library routines and all physical device creation and

deletion routines.
scsiCommonLib commands common to all types of SCSI devices.

scsiDirectLib routines and commands for direct access devices (disks).

143

VxWorks 5.3.1
Programmer’s Guide

scsiSeqLib routines and commands for sequential access block devices
(tapes).

Controller-independent support for the SCSI-2 functionality is divided into
scsi2Lib, scsiCommonLib, scsiDirectLib, and scsiSeqLib. The interface to any of
these SCSI-2 libraries can be accessed directly. However, scsiSeqLib is designed to
be used in conjunction with tapeFs, while scsiDirectLib works with dosFs, rt11Fs,
and rawFs. Applications written for SCSI-1 can be used with SCSI-2; however,
SCSI-1 device drivers cannot.

VxWorks targets using SCSI interface controllers require a controller-specific
device driver. These device drivers work in conjunction with the controller-
independent SCSI libraries, and they provide controller configuration and
initialization routines contained in controller-specific libraries. For example, the
Western Digital WD33C93 SCSI controller is supported by the device driver
libraries wd33c93Lib, wd33c93Lib1, and wd33c93Lib2. Routines tied to SCSI-1
(such as wd33c93CtriCreate()) and SCSI-2 (such as wd33c93CtrICreateScsi2()) are
segregated into separate libraries to simplify configuration. There are also
additional support routines for individual targets in sysLib.c.

Booting and Initialization

To boot from a SCSI device, see 4.2.21 Booting from a Local dosFs File System Using
SCSI, p.218.

After VxWorks is built with SCSI support, the system startup code initializes the
SCSI interface by executing sysScsilnit() and usrScsiConfig() when the constant
INCLUDE_SCSI is defined. The call to sysScsilnit() initializes the SCSI controller
and sets up interrupt handling. The physical device configuration is specified in
usrScsiConfig(), which is in src/config/usrScsi.c. The routine contains an example
of the calling sequence to declare a hypothetical configuration, including:

— definition of physical devices with scsiPhysDevCreate()
— creation of logical partitions with scsiBlkDevCreate()
— specification of a file system with either dosFsDevInit() or rt11FsDevinit()

If you are not using SCSI_AUTO_CONFIG, modify usrScsiConfig() to reflect your
actual configuration. For more information on the calls used in this routine, see the
reference entries for scsiPhysDevCreate(), scsiBlkDevCreate(), dosFsDevInit(),
rt11FsDevInit(), dosFsMkfs(), and rt11FsMKkfs().

Device-Specific Configuration Options
The SCSI libraries have the following default behaviors enabled:

— SCSI messages

144

3
I/O System

— disconnects

— minimum period and maximum REQ/ACK offset
— tagged command queuing

— wide data transfer

Device-specific options do not need to be set if the device shares this default
behavior. However, if you need to configure a device that diverges from these
default characteristics, use scsiTargetOptionsSet() to modify option values. These
options are fields in the SCSI_OPTIONS structure, shown below. SCSI_OPTIONS is
declared in scsi2Lib.h. You can choose to set some or all of these option values to
suit your particular SCSI device and application.

typedef struct * SCSI_OPTIONS - programmable options */
{
UINT selTimeOut; [* device selection time-out (us) */
BOOL messages; /* FALSE => do not use SCSI| messages */
BOOL disconnect; /* FALSE => do not use disconnect */
UINT8 maxOffset; /* max sync xfer offset (0 => async.) */
UINT8 minPeriod,; /* min sync xfer period (X 4 ns) */
SCSI_TAG_TYPE tagType; [* default tag type */
UINT maxTags; /* max cmd tags available (0 =>untag */
UINT8 xferwidth; /* wide data trnsfr width in SCSI units */

} SCSI_OPTIONS;

There are numerous types of SCSI devices, each supporting its own mix of SCSI-2
features. To set device-specific options, define a SCSI_OPTIONS structure and
assign the desired values to the structure’s fields. After setting the appropriate
fields, call scsiTargetOptionsSet() to effect your selections. Example 3-5 illustrates
one possible device configuration using SCSI_OPTIONS.

Call scsiTargetOptionsSet() after initializing the SCSI subsystem, but before
initializing the SCSI physical device. For more information about setting and
implementing options, see the reference entry for scsiTargetOptionsSet().

WARNING: Calling scsiTargetOptionsSet() after the physical device has been
initialized may lead to undefined behavior.

The SCSI subsystem performs each SCSI command request as a SCSI transaction.
This requires the SCSI subsystem to select a device. Different SCSI devices require
different amounts of time to respond to a selection; in some cases, the selTimeOut
field may need to be altered from the default.

If a device does not support SCSI messages, the boolean field messages can be set
to FALSE. Similarly, if a device does not support disconnect/reconnect, the
boolean field disconnect can be set to FALSE.

The SCSI subsystem automatically tries to negotiate synchronous data transfer
parameters. However, if a SCSI device does not support synchronous data transfer,

145

VxWorks 5.3.1
Programmer’s Guide

set the maxOffset field to 0. By default, the SCSI subsystem tries to negotiate the
maximum possible REQ/ACK offset and the minimum possible data transfer
period supported by the SCSI controller on the VxWorks target. This is done to
maximize the speed of transfers between two devices. However, speed depends
upon electrical characteristics, like cable length, cable quality, and device
termination; therefore, it may be necessary to reduce the values of maxOffset or
minPeriod for fast transfers.

The tagType field defines the type of tagged command queuing desired, using one
of the following macros:

- SCSI_TAG_UNTAGGED
- SCSI_TAG_SIMPLE

- SCSI_TAG_ORDERED

- SCSI_TAG_HEAD OF QUEUE

For more information about the types of tagged command queuing available, see
the ANSI X3T9-170 Interface Specification Small Computer System Interface (SCSI-
2).

The maxTags field sets the maximum number of command tags available for a
particular SCSI device.

Wide data transfers with a SCSI target device are automatically negotiated upon
initialization by the SCSI subsystem. Wide data transfer parameters are always
negotiated before synchronous data transfer parameters, as specified by the SCSI
ANSI specification, because a wide negotiation resets any prior negotiation of
synchronous parameters. However, if a SCSI device does not support wide
parameters and there are problems initializing that device, you must set the
xferWidth field to 0. By default, the SCSI subsystem tries to negotiate the
maximum possible transfer width supported by the SCSI controller on the
VxWorks target in order to maximize the default transfer speed between the two
devices. For more information on the actual routine call, see the reference entry for
scsiTargetOptionsSet().

SCSI Configuration Examples

The following examples show some possible configurations for different SCSI
devices. Example 3-4 is a simple block device configuration setup. Example 3-5
involves selecting special options and demonstrates the use of
scsiTargetOptionsSet(). Example 3-6 configures a tape device and a tape file
system. Example 3-7 configures a SCSI device for synchronous data transfer.
Example 3-8 shows how to configure the SCSI bus ID. These examples can be
embedded either in the usrScsiConfig() routine or in a user-defined SCSI
configuration function.

146

3
I/O System

Example 3-4 Configuring SCSI Drivers

In the following example, usrScsiConfig() was modified to reflect a new system
configuration. The new configuration has a SCSI disk with a bus ID of 4 and a
Logical Unit Number (LUN) of 0 (zero). The disk is configured with a dosFs file
system (with a total size of 0x20000 blocks) and a rawfFs file system (spanning the
remainder of the disk). The following usrScsiConfig() code reflects this
modification.

[* configure Winchester at busld =4, LUN =0 */

if (pSpd40 = scsiPhysDevCreate (pSysScsiCtrl, 4, 0, 0, NONE, 0, 0, 0))
== (SCSI_PHYS_DEV *) NULL)

{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n");
}

else
/* create block devices - one for dosFs and one for rawFs */

if (((pSbd0 = scsiBlkDevCreate (pSpd40, 0x20000, 0)) == NULL) ||
((pSbd1 = scsiBlkDevCreate (pSpd40, 0, 0x20000)) == NULL))

{
return (ERROR);
}

/¥ initialize both dosFs and rawFs file systems */

if ((dosFsDeviInit (*/sd0/", pSbd0, NULL) == NULL) ||
(rawFsDevinit ("/sd1/*, pSbd1) == NULL))

{
return (ERROR);
}

}

If problems with your configuration occur, insert the following lines at the
beginning of usrScsiConfig() to obtain further information on SCSI bus activity.
#if FALSE
scsiDebug = TRUE;
scsilntsDebug = TRUE;
#endif
Do not declare the global variables scsiDebug and scsilntsDebug locally. They can
be set or reset from the shell; see the Tornado User’s Guide: Shell for details.

147

Example 3-5

VxWorks 5.3.1
Programmer’s Guide

Configuring a SCSI Disk Drive with Asynchronous Data Transfer and No Tagged Command Queuing

In this example, a SCSI disk device is configured without support for synchronous
data transfer and tagged command queuing. The scsiTargetOptionsSet() routine
is used to turn off these features. The SCSI ID of this disk device is 2, and the LUN
is 0

int which;
SCSI_OPTIONS option;
int devBusld;
devBusld = 2;

which = SCSI_SET_OPT_XFER_PARAMS | SCSI_SET_OPT_TAG_PARAMS;
option.maxOffset = SCSI_SYNC_XFER_ASYNC_OFFSET;

/*=> 0 defined in scsi2Lib.h */
option.minPeriod = SCSI_SYNC_XFER_MIN_PERIOD; /* defined in scsi2Lib.h */
option.tagType = SCSI_TAG_UNTAGGED; /* defined in scsi2Lib.h */
option.maxTag = SCSI_MAX_TAGS;

if (scsiTargetOptionsSet (pSysScsiCtrl, devBusld, &option, which) == ERROR)
SCSI_DEBUG_MSG ("usrScsiConfig: could not set options\n“, 0, 0, 0, O,
0,0);
return (ERROR);
[* configure SCSI disk drive at busld = devBusld, LUN =0 */

if ((pSpd20 = scsiPhysDevCreate (pSysScsiCtrl, devBusld, 0, 0, NONE, 0, 0,
0)) == (SCSI_PHYS_DEV *) NULL)

SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n");
return (ERROR);

148

3
I/O System

Example 3-6 Working with Tape Devices

SCSI tape devices can be controlled using common commands from
scsiCommonLib and sequential commands from scsiSeqLib. These commands
use a pointer to a SCSI sequential device structure, SEQ_DEV, defined in seqlo.h.
For more information on controlling SCSI tape devices, see the reference entries for
these libraries.

This example configures a SCSI tape device whose bus ID is 5 and whose LUN is
0. It includes commands to create a physical device pointer, set up a sequential
device, and initialize a tapeFs device.

[* configure Exabyte 8mm tape drive at busld =5, LUN =0 */

if (pSpd50 = scsiPhysDevCreate (pSysScsiCtrl, 5, 0, 0, NONE, 0, 0, 0))
== (SCSI_PHYS_DEV *) NULL)

{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n");
return (ERROR);
[* configure the sequential device for this physical device */
if ((pSdO = scsiSegDevCreate (pSpd50)) == (SEQ_DEV *) NULL)
{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiSeqDevCreate failed.\n");
return (ERROR);
}
/* setup the tape device configuration */
pTapeConfig = (TAPE_CONFIG *) calloc (sizeof (TAPE_CONFIG), 1);
pTapeConfig->rewind = TRUE; /* this is a rewind device */
pTapeConfig->blkSize = 512; /* uses 512 byte fixed blocks */
[* initialize a tapeFs device */
if (tapeFsDevInit ("/tapel"”, pSdO, pTapeConfig) == NULL)

return (ERROR);
}

/* rewind the physical device using scsiSeqLib interface directly*/
if (scsiRewind (pSd0) == ERROR)

return (ERROR);

149

VxWorks 5.3.1
Programmer’s Guide

Example 3-7 Configuring a SCSI Disk for Synchronous Data Transfer with Non-Default Offset and Period Values

In this example, a SCSI disk drive is configured with support for synchronous data
transfer. The offset and period values are user-defined and differ from the driver
default values.The chosen period is 25, defined in SCSI units of 4 ns. Thus the
period is actually 4 * 25 = 100 ns. The synchronous offset is chosen to be 2. Note
that you may need to adjust the values depending on your hardware environment.

int which;
SCSI_OPTIONS option;
int devBusild;
devBusld = 2;

which = SCSI_SET_IPT_XFER_PARAMS;
option.maxOffset = 2;
option.minPeriod = 25;

if (scsiTargetOptionsSet (pSysScsiCtrl, devBusld &option, which) ==
ERROR)

{
SCSI_DEBUG_MSG ("usrScsiConfig: could not set options\n“,
0,0,0,0,0,0)
return (ERROR);
[* configure SCSI disk drive at busld = devBusld, LUN =0 */

if (pSpd20 = scsiPhysDevCreate (pSysScsiCtrl, devBusld, 0, 0, NONE,
0,0, 0)) == (SCSI_PHYS_DEV *) NULL)

{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n")
return (ERROR);

Example 3-8 Changing the Bus ID of the SCSI Controller

To change the bus ID of the SCSI controller, modify sysScsilnit() in sysScsi.c. Set
the SCSI bus ID to a value between 0 and 7 in the call to xxxCtrlInitScsi2() (where
xxx is the controller name); the default bus ID for the SCSI controller is 7.

150

3
I/O System

Troubleshooting
Incompatibilities Between SCSI-1 and SCSI-2

Applications written for SCSI-1 may not execute for SCSI-2 because data
structures in scsi2Lib.h, such as SCSI_TRANSACTION and SCSI_PHYS _DEV,
have changed. This applies only if the application used these structures
directly.

If this is the case, you can choose to configure only the SCSI-1 level of support,
or you can modify your application according to the data structures in
scsi2Lib.h. In order to set new fields in the modified structure, some
applications may simply need to be recompiled, and some applications will
have to be modified and then recompiled.

SCSI Bus Failure

If your SCSI bus hangs, it could be for a variety of reasons. Some of the more
common are:

— Your cable has a defect. This is the most common cause of failure.

— The cable exceeds the cumulative maximum length of 6 meters specified
in the SCSI-2 standard, thus changing the electrical characteristics of the
SCSI signals.

— The bus is not terminated correctly. Consider providing termination
power at both ends of the cable, as defined in the SCSI-2 ANSI
specification.

— The minimum transfer period is insufficient or the REQ/ACK offset is too
great. Use scsiTargetOptionsSet() to set appropriate values for these
options.

— Thedriver is trying to negotiate wide data transfers on a device that does
not support them. In rejecting wide transfers, the device-specific driver
cannot handle this phase mismatch. Use scsiTargetOptionsSet() to set the
appropriate value for the xferWidth field for that particular SCSI device.

151

3.7.7 Sockets

VxWorks 5.3.1
Programmer’s Guide

In VxWorks, the underlying basis of network communications is sockets. A socket
is an endpoint for communication between tasks; data is sent from one socket to
another. Sockets are not created or opened using the standard 1/0 functions.
Instead they are created by calling socket(), and connected and accessed using
other routines in sockLib. However, after a stream socket (using TCP) is created
and connected, it can be accessed as a standard 1/0 device, using read(), write(),
ioctl(), and close(). The value returned by socket() as the socket handle is in fact
an 1/0 system fd.

VxWorks socket routines are source-compatible with the BSD 4.3 UNIX socket
functions and the Windows Sockets (Winsock 1.1) networking standard. Use of
these routines is discussed in 5.2.6 Sockets, p.251.

3.8 Differences Between VxWorks and Host System I/O

Most commonplace uses of 1/0 in VxWorks are completely source-compatible
with 170 in UNIX and Windows. However, note the following differences:

Device Configuration. In VXWorks, device drivers can be installed and
removed dynamically.

File Descriptors. In UNIX and Windows, fds are unique to each process. In
VxWorks, fds are global entities, accessible by any task, except for standard
input, standard output, and standard error (0, 1, and 2), which can be task
specific.

= 1/O Control. The specific parameters passed to ioctl() functions can differ
between UNIX and VxWorks.

Driver Routines. In UNIX, device drivers execute in system mode and are not
preemptible. In VxWorks, driver routines are in fact preemptible because they
execute within the context of the task that invoked them.

152

3
I/O System

3.9 Internal Structure

The VxWorks 1/0 system is different from most in the way the work of performing
user I/0 requests is apportioned between the device-independent 1/0 system and
the device drivers themselves.

In many systems, the device driver supplies a few routines to perform low-level
I/0 functions such as inputting or outputting a sequence of bytes to character-
oriented devices. The higher-level protocols, such as communications protocols on
character-oriented devices, are implemented in the device-independent part of the
170 system. The user requests are heavily processed by the 1/0 system before the
driver routines get control.

While this approach is designed to make it easy to implement drivers and to
ensure that devices behave as much alike as possible, it has several drawbacks. The
driver writer is often seriously hampered in implementing alternative protocols
that are not provided by the existing 1/0 system. In a real-time system, it is
sometimes desirable to bypass the standard protocols altogether for certain
devices where throughput is critical, or where the device does not fit the standard
model.

In the VxWorks 1/0 system, minimal processing is done on user 1/0 requests
before control is given to the device driver. Instead, the VxWorks 170 system acts
as a switch to route user requests to appropriate driver-supplied routines. Each
driver can then process the raw user requests as appropriate to its devices. In
addition, however, several high-level subroutine libraries are available to driver
writers that implement standard protocols for both character- and block-oriented
devices. Thus the VxWorks I/0 system gives you the best of both worlds: while it
is easy to write a standard driver for most devices with only a few pages of device-
specific code, driver writers are free to execute the user requests in nonstandard
ways where appropriate.

There are two fundamental types of device: block and character (or non-block; see
Figure 3-8). Block devices are used for storing file systems. They are random access
devices where data is transferred in blocks. Examples of block devices include
hard and floppy disks. Character devices are any device that does not fall in the
block category. Examples of character devices include serial and graphical input
devices, for example, terminals and graphics tablets.

As discussed in earlier sections, the three main elements of the VxWorks 170
system are drivers, devices, and files. The following sections describe these
elements in detail. The discussion focuses on character drivers; however, much of
it is applicable for block devices. Because block drivers must interact with

153

VxWorks 5.3.1
Programmer’s Guide

VxWorks file systems, they use a slightly different organization; see 3.9.4 Block
Devices, p.171.

Example 3-9 shows the abbreviated code for a hypothetical driver that is used as
an example throughout the following discussions. This example driver is typical
of drivers for character-oriented devices.

In VxWorks, each driver has a short, unique abbreviation, such as net or tty, which
is used as a prefix for each of its routines. The abbreviation for the example driver
IS XX.

Example 3-9 Hypothetical Driver

!
* xxDrv - driver initialization routine

*

* xxDrv() initializes the driver. It installs the driver via iosDrvinstall.

* |t may allocate data structures, connect ISRs, and initialize hardware.
*/

STATUS xxDrv ()
{

xxDrvNum = iosDrvinstall (xxCreat, 0, xxOpen, 0, xxRead, xxWrite, xxloctl);
(void) intConnect (intvec, xxInterrupt, ...);

}

/
* xxDevCreate - device creation routine

*

* Called to add a device called <name> to be serviced by this driver. Other
* driver-dependent arguments may include buffer sizes, device addresses...
* The routine adds the device to the I/O system by calling iosDevAdd.

* |t may also allocate and initialize data structures for the device,

* initialize semaphores, initialize device hardware, and so on.

*

STATUS xxDevCreate (name, ...)
char * name;

status = iosDevAdd (xxDev, name, xxDrvNum);

/
* The following routines implement the basic 1/O functions. The xxOpen()
* return value is meaningful only to this driver, and is passed back as an
* argument to the other I/O routines.

*

154

3.9.1 Drivers

3
I/O System

int xxOpen (xxDev, remainder, mode)
XXDEV * xxDev;
char * remainder;
int mode;

/* serial devices should have no file name part */

if (remainder[0] != 0)
return (ERROR);
else
return ((int) xxDev);

int xxRead (xxDev, buffer, nBytes)
XXDEV * xxDev;
char * buffer;
int nBytes;

int xxWrite (xxDev, buffer, nBytes)

int xxloctl (xxDev, requestCode, arg)

!
* xxInterrupt - interrupt service routine

*

* Most drivers have routines that handle interrupts from the devices
* serviced by the driver. These routines are connected to the interrupts
* by calling intConnect (usually in xxDrv above). They can receive a

* single argument, specified in the call to intConnect (see intLib).
*

VOID xxInterrupt (arg)

A driver for a non-block device implements the seven basic I/0 functions—
creat(), remove(), open(), close(), read(), write(), and ioctl()—for a particular
kind of device. In general, this type of driver has routines that implement each of
these functions, although some of the routines can be omitted if the functions are
not operative with that device.

Drivers can optionally allow tasks to wait for activity on multiple file descriptors.
This is implemented using the driver’s ioctl() routine; see Implementing select(),
p.163.

A driver for a block device interfaces with a file system, rather than directly with
the 170 system. The file system in turn implements most I/0 functions. The driver

155

VxWorks 5.3.1
Programmer’s Guide

need only supply routines to read and write blocks, reset the device, perform 1/0
control, and check device status. Drivers for block devices have a number of
special requirements that are discussed in 3.9.4 Block Devices, p.171.

When the user invokes one of the basic 1/0 functions, the I/0 system routes the
request to the appropriate routine of a specific driver, as detailed in the following
sections. The driver’s routine runs in the calling task’s context, as though it were
called directly from the application. Thus, the driver is free to use any facilities
normally available to tasks, including 170 to other devices. This means that most
drivers have to use some mechanism to provide mutual exclusion to critical
regions of code. The usual mechanism is the semaphore facility provided in
semLib.

In addition to the routines that implement the seven basic 1/0 functions, drivers
also have three other routines:

= Aninitialization routine that installs the driver in the 1/0 system, connects to
any interrupts used by the devices serviced by the driver, and performs any
necessary hardware initialization (typically named xxDrv()).

= Avroutine to add devices that are to be serviced by the driver (typically named
xxDevCreate()) to the I/0 system.

« Interrupt-level routines that are connected to the interrupts of the devices
serviced by the driver.

The Driver Table and Installing Drivers

The function of the 1/0 system is to route user 1/0 requests to the appropriate
routine of the appropriate driver. The 1/0 system does this by maintaining a table
that contains the address of each routine for each driver. Drivers are installed
dynamically by calling the 1/0 system internal routine iosDrvinstall(). The
arguments to this routine are the addresses of the seven 1/0 routines for the new
driver. The iosDrvlinstall() routine enters these addresses in a free slot in the
driver table and returns the index of this slot. This index is known as the driver
number and is used subsequently to associate particular devices with the driver.

Null (0) addresses can be specified for some of the seven routines. This indicates
that the driver does not process those functions. For non-file-system drivers,
close() and remove() often do nothing as far as the driver is concerned.

VxWorks file systems (dosFsLib, rt11FsLib, and rawFsLib) contain their own
entries in the driver table, which are created when the file system library is
initialized.

156

3
I/O System

Example of Installing a Driver
Figure 3-2 shows the actions taken by the example driver and by the 1/0 system
when the initialization routine xxDrv() runs.

[1]1 The driver calls iosDrvinstall(), specifying the addresses of the driver’s
routines for the seven basic 1/0 functions.

The 1/0 system:
[2] Locates the next available slot in the driver table, in this case slot 2.
[3] Enters the addresses of the driver routines in the driver table.

[4] Returns the slot number as the driver number of the newly installed driver.

Figure 3-2 Example — Driver Initialization for Non-Block Devices

DRIVER CALL:

drvnum = iosDrvinstall (xxCreat, 0, xxOpen, 0, xxRead, xxWrite, xxloctl);

[1] Driver’s install routine specifies driver
routines for seven 1/0 functions.

[2] 170 system locates next

[4] Id/O systembretums available slot in driver table.
river number

(drvnum =2).

create remove open close read write ioctl

DRIVER TABLE:

xxCreatf O [xxOpen| 0 [xxRead|xxWrite| xxloctl

A W NPEO

[3] 170 system enters driver
routines in driver table.

157

VxWorks 5.3.1
Programmer’s Guide

3.9.2 Devices

Some drivers are capable of servicing many instances of a particular kind of device.
For example, a single driver for a serial communications device can often handle
many separate channels that differ only in a few parameters, such as device
address.

In the VxWorks 170 system, devices are defined by a data structure called a device
header (DEV_HDR). This data structure contains the device name string and the
driver number for the driver that services this device. The device headers for all
the devices in the system are kept in a memory-resident linked list called the device
list. The device header is the initial part of a larger structure determined by the
individual drivers. This larger structure, called a device descriptor, contains
additional device-specific data such as device addresses, buffers, and semaphores.

The Device List and Adding Devices

Non-block devices are added to the 1/0 system dynamically by calling the internal
170 routine iosDevAdd(). The arguments to iosDevAdd() are the address of the
device descriptor for the new device, the device’s name, and the driver number of
the driver that services the device. The device descriptor specified by the driver
can contain any necessary device-dependent information, as long as it begins with
a device header. The driver does not need to fill in the device header, only the
device-dependent information. The iosDevAdd() routine enters the specified
device name and the driver number in the device header and adds it to the system
device list.

To add a block device to the 1/0 system, call the device initialization routine for
the file system required on that device (dosFsDevInit(), rt11FsDevInit(), or
rawFsDevlnit()). The device initialization routine then calls iosDevAdd()
automatically.

Example of Adding Devices

In Figure 3-3, the example driver’s device creation routine xxDevCreate() adds
devices to the 170 system by calling iosDevAdd().

158

3
I/O System

Figure 3-3 Example — Addition of Devices to I/0O System

DRIVER CALLS: status = iosDevAdd (devO, "/xx0", drvnum);
status = iosDevAdd (dev1l, "/xx1", drvnum);

1/0 system adds device descriptors

to device list. Each descriptor contains
device name and driver number (in this
case 2) and any device-specific data.

[

DEVICE LIST: = %L - [=
"/dkO/" "/xx0" "Ixx1"
1 2 2
de\llice- devlice-
dependent dependent
data data
| |

create remove open close read write ioctl

DRIVER TABLE:

A W DNPFO

3.9.3 File Descriptors

Several fds can be open to a single device at one time. A device driver can maintain
additional information associated with an fd beyond the 1/0 system’s device
information. In particular, devices on which multiple files can be open at one time
have file-specific information (for example, file offset) associated with each fd. You
can also have several fds open to a non-block device, such as a tty; typically there
is no additional information, and thus writing on any of the fds produces identical
results.

159

VxWorks 5.3.1
Programmer’s Guide

The Fd Table

Files are opened with open() (or creat()). The 1/0 system searches the device list
for a device name that matches the file name (or an initial substring) specified by
the caller. If a match is found, the 1/0 system uses the driver number contained in
the corresponding device header to locate and call the driver’s open routine in the
driver table.

The 1/0 system must establish an association between the file descriptor used by
the caller in subsequent 170 calls, and the driver that services it. Additionally, the
driver must associate some data structure per descriptor. In the case of non-block
devices, this is usually the device descriptor that was located by the 1/0 system.

The 1/0 system maintains these associations in a table called the fd table. This table
contains the driver number and an additional driver-determined 4-byte value. The
driver value is the internal descriptor returned by the driver’s open routine, and
can be any nonnegative value the driver requires to identify the file. In subsequent
calls to the driver’s other I/0 functions (read(), write(), ioctl(), and close()), this
value is supplied to the driver in place of the fd in the application-level 1/0 call.

Example of Opening a File

In Figure 3-4 and Figure 3-5, a user calls open() to open the file /xx0. The 1/0
system takes the following series of actions:

[1] Itsearchesthe device list for a device name that matches the specified file name
(or an initial substring). In this case, a complete device name matches.

[2] Itreservesaslotin the fd table, which is used if the open is successful.

[3] Itthen looks up the address of the driver’s open routine, xxOpen(), and calls
that routine. Note that the arguments to xxOpen() are transformed by the 170
system from the user’s original arguments to open(). The first argument to
xxOpen() is a pointer to the device descriptor the I/0 system located in the full
file name search. The next parameter is the remainder of the file name specified
by the user, after removing the initial substring that matched the device name.
In this case, because the device name matched the entire file name, the
remainder passed to the driver is a null string. The driver is free to interpret
this remainder in any way it wants. In the case of block devices, this remainder
is the name of a file on the device. In the case of non-block devices like this one,
it is usually an error for the remainder to be anything but the null string. The
last parameter is the file access flag, in this case O_RDONLY; that is, the file is
opened for reading only.

160

3

I/O System
Figure 3-4 Example: Call to I/O Routine open() [Part 1]
USER CALL: DRIVER CALL:
fd = open ("/xx0", O_RDONLY); xxdev = xxOpen (xxdev, "', O_RDONLY);
[1] 170 system finds [2] 170 system reserves [3] 170 system calls
name in device list. aslot in the fd table. driver’s open routine

with pointer to
device descriptor.

drvnum value
FD TABLE: 0
1
2
3
4
DEVICE LIST: = % T -
"/dk0/" "/xx0" "Ixx1"
1 2 2
devlice—
dependent
data
|
DRIVER TABLE: create remove open close read write ioctl
0
1
2 xxOpen
3
4

161

VxWorks 5.3.1
Programmer’s Guide

Figure 3-5 Example: Call to I/O Routine open() [Part 2]

USER CALL: DRIVER CALL:
fd = open ("/xx0", O_RDONLY); xxdev = xxOpen (xxdev, "', O_RDONLY);
[6]170 system returns [5] 170 system enters [4] Driver returns any
index in fd table of driver number and identifying value, in
new open file (fd = 3). identifying value in this case the pointer to
reserved fd table slot. the device descriptor.
FD TABLE: drvnum value
' 0
1
2
3 2 xxdev
4
) |
DEVICE LIST: «= % % 1>
"/dk0/" "/xx0" "/xx1"
1 2 2
device-
dependent
data
DRIVER TABLE: create remove open close read write ioctl
0
1
=2
3
4

162

3
I/O System

[4] It executes xxOpen(), which returns a value that subsequently identifies the
newly opened file. In this case, the value is the pointer to the device descriptor.
This value is supplied to the driver in subsequent 1/0 calls that refer to the file
being opened. Note that if the driver returns only the device descriptor, the
driver cannot distinguish multiple files opened to the same device. In the case
of non-block device drivers, this is usually appropriate.

[5] The I/0 system then enters the driver number and the value returned by
xxOpen() in the reserved slot in the fd table. Again, the value entered in the fd
table has meaning only for the driver, and is arbitrary as far as the 1/0 system
is concerned.

[6] Finally, it returns to the user the index of the slot in the fd table, in this case 3.

Example of Reading Data from the File

In Figure 3-6, the user calls read() to obtain input data from the file. The specified
fd is the index into the fd table for this file. The 1/0 system uses the driver number
contained in the table to locate the driver’s read routine, xxRead(). The I/0 system
calls xxRead(), passing it the identifying value in the fd table that was returned by
the driver’s open routine, xxOpen(). Again, in this case the value is the pointer to
the device descriptor. The driver’s read routine then does whatever is necessary to
read data from the device.

The process for user calls to write() and ioctl() follow the same procedure.

Example of Closing a File

The user terminates the use of a file by calling close(). As in the case of read(), the
170 system uses the driver number contained in the fd table to locate the driver’s
close routine. In the example driver, no close routine is specified; thus no driver
routines are called. Instead, the 1/0 system marks the slot in the fd table as being
available. Any subsequent references to that fd cause an error. However,
subsequent calls to open() can reuse that slot.

Implementing select()
Supporting select() in your driver allows tasks to wait for input from multiple

devices or to specify a maximum time to wait for the device to become ready for
I/0. Writing a driver that supports select() is simple, because most of the

163

VxWorks 5.3.1

Programmer’s Guide

Figure 3-6 Example: Call to I/O Routine read()

USER CALL:

n = read (fd, buf, len);

1/0 system transforms the user’s I/0

DRIVER CALL:

n = xxRead (xxdev, buf, len);

routine calls into driver routine calls

replacing the fd with the value returned
by the driver’s open routine, XXOpen().

drvnum value

FD TABLE: 0
1
2
3 2 xxdev
4
. Y
DEVICE LIST: - % =%
"/dkO/" "xx0" "Ixx1"
1 2 2
device-
dependent
data
]
DRIVER TABLE: create remove open rdad write ioctl
' 0
1
2 xxRead
3
4

164

3
I/O System

functionality is provided in selectLib. You might want your driver to support
select() if any of the following is appropriate for the device:

= The tasks want to specify a timeout to wait for 1/0 from the device. For
example, a task might want to time out on a UDP socket if the packet never
arrives.

= The driver supports multiple devices, and the tasks want to wait
simultaneously for any number of them. For example, multiple pipes might be
used for different data priorities.

= The tasks want to wait for 1/0 from the device while also waiting for 1/0 from
another device. For example, a server task might use both pipes and sockets.

To implement select(), the driver must keep a list of tasks waiting for device
activity. When the device becomes ready, the driver unblocks all the tasks waiting
on the device.

For a device driver to support select(), it must declare a SEL_WAKEUP_LIST
structure (typically declared as part of the device descriptor structure) and
initialize it by calling selWakeupListInit(). This is done in the driver’s
xxDevCreate() routine. When a task calls select(), selectLib calls the driver’s
ioctl() routine with the function FIOSELECT or FIOUNSELECT. If ioctl() is called
with FIOSELECT, the driver must do the following:

1. Add the SEL_WAKEUP_NODE (provided as the third argument of ioctl()) to
the SEL_ WAKEUP_LIST by calling selNodeAdd().

2. Use the routine selWakeupType() to check whether the task is waiting for data
to read from the device (SELREAD) or if the device is ready to be written
(SELWRITE).

3. If the device is ready (for reading or writing as determined by
selWakeupType()), the driver calls the routine selWakeup() to make sure that
the select() call in the task does not pend. This avoids the situation where the
task is blocked but the device is ready.

If ioctl() is called with FIOUNSELECT, the driver calls seINodeDelete() to remove
the provided SEL_ WAKEUP_NODE from the wakeup list.

When the device becomes available, selWakeupAll() is used to unblock all the
tasks waiting on this device. Although this typically occurs in the driver’s ISR, it
can also occur elsewhere. For example, a pipe driver might call selWakeupAll()
from its xxRead() routine to unblock all the tasks waiting to write, now that there
is room in the pipe to store the data. Similarly the pipe’s xxWrite() routine might
call selwakeupAll() to unblock all the tasks waiting to read, now that there is data
in the pipe.

165

Example 3-10

VxWorks 5.3.1
Programmer’s Guide

Driver Code Using the Select Facility

/* This code fragment shows how a driver might support select(). In this

* example, the driver unblocks tasks waiting for the device to become ready
*in its interrupt service routine.

*

[* arkLib.h - header file for ark driver */

typedef struct /* ARK_DEV */

{

DEV_HDR devHdr; /* ark device header */

BOOL arkDataAvailable; [* data is available to read */

BOOL arkRdyForWriting; [* device is ready to write */
SEL_WAKEUP_LIST selWakeupList; I* list of tasks pended in select */
}ARK_DEV;

[* arkDrv.c - code fragments for supporting select() in a driver */

#include "vxWorks.h"
#include "selectLib.h"

STATUS arkDevCreate
char * name, /* name of ark to create */
int number, /* number of arks to create */
int aCount /* number of animals to live on ark */
)
{ . . .
ARK_DEYV * pArkDev; [* pointer to ark device descriptor */

your driver code ...

[* allocate memory for ARK_DEV */

pArkDev = (ARK_DEV *) malloc ((unsigned) sizeof (ARK_DEV + number * aCount));
your driver code ...

/* initialize wakeup list */

selWakeupListlnit (&pArkDev->selWakeupList);

your driver code ...

}
STATUS arkloctl
(
ARK_DEV * pArkDev, * pointer to ark device descriptor */
int request, /* ioctl function */
int* arg /* where to send answer */

)

166

3
I/O System

your driver code ...

switch (request)

your driver code ...
case FIOSELECT:
/* add node to wakeup list */
selNodeAdd (&pArkDev->selWakeuplList, (SEL_WAKEUP_NODE *) arg);

if (selWakeupType ((SEL_WAKEUP_NODE *) arg) == SELREAD
&& pArkDev->arkDataAvailable)

/* data available, make sure task does not pend */
selWakeup ((SEL_WAKEUP_NODE *) arg);

if (selWakeupType ((SEL_WAKEUP_NODE *) arg) == SELWRITE
&& pArkDev->arkRdyForWriting)

[* device ready for writing, make sure task does not pend */
selWakeup ((SEL_WAKEUP_NODE *) arg);
case FIOUNSELECT:
[* delete node from wakeup list */
selNodeDelete (&pArkDev->selWakeupList, (SEL_WAKEUP_NODE *) arg);
your driver code ...
}
void arkISR

(
ARK_DEV *pArkDev;
)

{

your driver code ...
[* if there is data available to read, wake up all pending tasks */

if (pArkDev->arkDataAvailable)
selWakeupAll (&pArkDev->selWakeupList, SELREAD);

[if the device is ready to write, wake up all pending tasks */

if (pArkDev->arkRdyForWriting)
selWakeupAll (&pArkDev->selWakeupList, SELWRITE);
}

167

VxWorks 5.3.1
Programmer’s Guide

Cache Coherency

Figure 3-7

Drivers written for boards with caches must guarantee cache coherency. Cache
coherency means data in the cache must be in sync, or coherent, with data in RAM.
The data cache and RAM can get out of sync any time there is asynchronous access
to RAM (for example, DMA device access or VMEbus access). Data caches are used
to increase performance by reducing the number of memory accesses. Figure 3-7
shows the relationships between the CPU, data cache, RAM, and a DMA device.

Data caches can operate in one of two modes: writethrough and copyback. Write-
through mode writes data to both the cache and RAM,; this guarantees cache
coherency on output but not input. Copyback mode writes the data only to the
cache; this makes cache coherency an issue for both input and output of data.

Cache Coherency

CPU
Data Cache
DMA
RAM .
Device

If a CPU writes data to RAM that is destined for a DMA device, the data can first
be written to the data cache. When the DMA device transfers the data from RAM,
there is no guarantee that the data in RAM was updated with the data in the cache.
Thus, the data output to the device may not be the most recent—the new data may
still be sitting in the cache. This data incoherency can be solved by making sure the
data cache is flushed to RAM before the data is transferred to the DMA device.

If a CPU reads data from RAM that originated from a DMA device, the data read
can be from the cache buffer (if the cache buffer for this data is not marked invalid)
and not the data just transferred from the device to RAM. The solution to this data
incoherency is to make sure that the cache buffer is marked invalid so that the data
is read from RAM and not from the cache.

Drivers can solve the cache coherency problem either by allocating cache-safe
buffers (buffers that are marked non-cacheable) or flushing and invalidating cache

168

Example 3-11

3
I/O System

entries any time the data is written to or read from the device. Allocating cache-
safe buffers is useful for static buffers; however, this typically requires MMU
support. Non-cacheable buffers that are allocated and freed frequently (dynamic
buffers) can result in large amounts of memory being marked non-cacheable. An
alternative to using non-cacheable buffers is to flush and invalidate cache entries
manually; this allows dynamic buffers to be kept coherent.

The routines cacheFlush() and cachelnvalidate() are used to manually flush and
invalidate cache buffers. Before a device reads the data, flush the data from the
cache to RAM using cacheFlush() to ensure the device reads current data. After the
device has written the data into RAM, invalidate the cache entry with
cachelnvalidate(). This guarantees that when the data is read by the CPU, the
cache is updated with the new data in RAM.

DMA Transfer Routine

/* This a sample DMA transfer routine. Before programming the device to
* output the data to the device, it flushes the cache by calling

* cacheFlush(). On a read, after the device has transferred the data, the
* cache entry must be invalidated using cachelnvalidate().

*

#include "vxWorks.h"

#include "cachelLib.h"

#include "fentl.h"

#include "example.h"

void exampleDmaTransfer /*1=READ, 0 = WRITE */

(

UINT8 *pExampleBuf,
int exampleBufLen,
int xferDirection

)
if (xferDirection == 1)

myDevToBuf (pExampleBuf);
cachelnvalidate (DATA_CACHE, pExampleBuf, exampleBufLen);

}

else

{

cacheFlush (DATA_CACHE, pExampleBuf, exampleBufLen);
myBufToDev (pExampleBuf);

}

}

It is possible to make a driver more efficient by combining cache-safe buffer
allocation and cache-entry flushing or invalidation. The idea is to flush or
invalidate a cache entry only when absolutely necessary. To address issues of cache
coherency for static buffers, use cacheDmaMalloc(). This routine initializes a
CACHE_FUNCS structure (defined in cacheLib.h) to point to flush and invalidate

169

Example 3-12

VxWorks 5.3.1
Programmer’s Guide

routines that can be used to keep the cache coherent. The macros

CACHE_DMA FLUSH and CACHE_DMA_INVALIDATE use this structure to
optimize the calling of the flush and invalidate routines. If the corresponding
function pointer in the CACHE_FUNCS structure is NULL, no unnecessary
flush/invalidate routines are called because it is assumed that the buffer is cache
coherent (hence it is not necessary to flush/invalidate the cache entry manually).

Some architectures allow the virtual address to be different from the physical
address seen by the device; see 7.3 Virtual Memory Configuration, p.407 in this
manual. In this situation, the driver code uses a virtual address and the device uses
a physical address. Whenever a device is given an address, it must be a physical
address. Whenever the driver accesses the memory;, it uses the virtual address. The
driver translates the address using the following macros:
CACHE_DMA_PHYS_TO_VIRT (to translate a physical address to a virtual one) and
CACHE_DMA_VIRT_TO_PHYS (to translate a virtual address to a physical one).
Address-Translation Driver

/* The following code is an example of a driver that performs address

* translations. It attempts to allocate a cache-safe buffer, fill it, and

* then write it out to the device. It uses CACHE_DMA_FLUSH to make sure

* the data is current. The driver then reads in new data and uses

* CACHE_DMA_INVALIDATE to guarantee cache coherency.

*/

#include "vxWorks.h"

#include "cacheLib.h"

#include "myExample.h"

STATUS myDmaExample (void)

{
void * pMyBuUf;
void * pPhysAddr;

[* allocate cache safe buffers if possible */

if ((pMyBuf = cacheDmaMalloc (MY_BUF_SIZE)) == NULL)
return (ERROR);

... fill buffer with useful information ...

/* flush cache entry before data is written to device */
CACHE_DMA_FLUSH (pMyBuf, MY_BUF_SIZE);

/* convert virtual address to physical */

pPhysAddr = CACHE_DMA_VIRT_TO_PHYS (pMyBuf);
[* program device to read data from RAM */

myBufToDev (pPhysAddr);

170

3
I/O System

... wait for DMA to complete ...

... ready to read new data ...

[* program device to write data to RAM */

myDevToBuf (pPhysAddr);

... wait for transfer to complete ...

* convert physical to virtual address */

pMyBuf = CACHE_DMA_PHYS_TO_VIRT (pPhysAddr);
* invalidate buffer */

CACHE_DMA_INVALIDATE (pMyBuf, MY_BUF_SIZE);
... use data ...

/*when done free memory */

if (cacheDmaFree (pMyBuf) == ERROR)
return (ERROR);

return (OK);

3.9.4 Block Devices

General Implementation

In VxWorks, block devices have a slightly different interface than other I/0
devices. Rather than interacting directly with the 1/0 system, block device drivers
interact with a file system. The file system, in turn, interacts with the 1/0 system.
Direct access block devices have been supported since SCSI-1 and are used
compatibly with dosFs, rt11Fs, and rawFs. In addition, VxWorks supports SCSI-2
sequential devices, which are organized so individual blocks of data are read and
written sequentially. When data blocks are written, they are added sequentially at
the end of the written medium; that is, data blocks cannot be replaced in the
middle of the medium. However, data blocks can be accessed individually for
reading throughout the medium. This process of accessing data on a sequential
medium differs from that of other block devices.

Figure 3-8 shows a layered model of 170 for both block and non-block (character)
devices. This layered arrangement allows the same block device driver to be used

171

VxWorks 5.3.1

Programmer’s Guide

Figure 3-8 Non-Block Devices vs. Block Devices

Application

I/O System

driver table

_ﬁ

(

File System
dosFs, rt11Fs, rawFs
or tapeFs
Non-Block Block
Device Driver Device Driver

= @

with different file systems, and reduces the number of 1/0 functions that must be

supported in the

A device driver for a block device must provide a means for creating a logical block
a BLK_DEV for direct access block devices or a SEQ_DEV for
sequential block devices. The BLK_DEV/SEQ_DEV structure describes the device
in a generic fashion, specifying only those common characteristics that must be
known to a file system being used with the device. Fields within the structures
specify various physical configuration variables for the device—for example, block
size, or total number of blocks. Other fields in the structures specify routines
within the device driver that are to be used for manipulating the device (reading

device structure,

172

driver.

3
I/O System

blocks, writing blocks, doing 1/0 control functions, resetting the device, and
checking device status). The BLK_DEV/SEQ_DEV structures also contain fields
used by the driver to indicate certain conditions (for example, a disk change) to the
file system.

When the driver creates the block device, the device has no name or file system
associated with it. These are assigned during the device initialization routine for
the chosen file system (for example, dosFsDevInit(), rt11FsDevinit() or
tapeFsDevinit()).

The low-level device driver for a block device is not installed in the I/0 system
driver table, unlike non-block device drivers. Instead, each file system in the
VxWorks system is installed in the driver table as a “driver.” Each file system has
only one entry in the table, even though several different low-level device drivers
can have devices served by that file system.

After a device is initialized for use with a particular file system, all 1/0 operations
for the device are routed through that file system. To perform specific device
operations, the file system in turn calls the routines in the specified BLK_DEV or
SEQ_DEV structure.

A driver for a block device must provide the interface between the device and
VxWorks. There is a specific set of functions required by VxWorks; individual
devices vary based on what additional functions must be provided. The user
manual for the device being used, as well as any other drivers for the device, is
invaluable in creating the VxWorks driver. The following sections describe the
components necessary to build low-level block device drivers that adhere to the
standard interface for VxWorks file systems.

Low-Level Driver Initialization Routine

The driver normally requires a general initialization routine. This routine performs
all operations that are done one time only, as opposed to operations that must be
performed for each device served by the driver. As a general guideline, the
operations in the initialization routine affect the whole device controller, while
later operations affect only specific devices.

Common operations in block device driver initialization routines include:

— initializing hardware

— allocating and initializing data structures
— creating semaphores

— initializing interrupt vectors

— enabling interrupts

173

VxWorks 5.3.1
Programmer’s Guide

The operations performed in the initialization routine are entirely specific to the
device (controller) being used; VxWorks has no requirements for a driver
initialization routine.

Unlike non-block device drivers, the driver initialization routine does not call
iosDrvinstall() to install the driver in the 1/0 system driver table. Instead, the file
system installs itself as a “driver” and routes calls to the actual driver using the
routine addresses placed in the block device structure, BLK_DEV or SEQ_DEYV (see
Device Creation Routine, p.174).

Device Creation Routine

The driver must provide a routine to create (define) a logical disk or sequential
device. A logical disk device may be only a portion of a larger physical device. If
this is the case, the device driver must keep track of any block offset values or other
means of identifying the physical area corresponding to the logical device.
VxWorks file systems always use block numbers beginning with zero for the start
of a device. A sequential access device can be either of variable block size or fixed
block size. Most applications use devices of fixed block size.

The device creation routine generally allocates a device descriptor structure that
the driver uses to manage the device. The first item in this device descriptor must
be a VxWorks block device structure (BLK_DEV or SEQ_DEV). It must appear first
because its address is passed by the file system during calls to the driver; having
the BLK_DEV or SEQ_DEYV as the first item permits also using this address to
identify the device descriptor.

The device creation routine must initialize the fields within the BLK_DEV or
SEQ_DEV structure. The BLK_DEV fields and their initialization values are shown
in Table 3-14. The SEQ_DEYV fields and their initialization values are shown in
Table 3-15.

The device creation routine returns the address of the BLK_DEV or SEQ_DEV
structure. This address is then passed during the file system device initialization
call to identify the device.

Unlike non-block device drivers, the device creation routine for a block device
does not call iosDevAdd() to install the device in the 1/0 system device table.
Instead, this is done by the file system’s device initialization routine.

174

Table 3-14

Table 3-15

3
I/O System

Fields in the BLK_DEV Structure

Field Value

bd_blkRd Address of the driver routine that reads blocks from the device.
bd_blkwrt Address of the driver routine that writes blocks to the device.
bd_ioctl Address of the driver routine that performs device 1/0 control.
bd_reset Address of the driver routine that resets the device (NULL if

bd_statusChk

bd_removable

bd_nBlocks
bd_bytesPerBlk
bd_blksPerTrack
bd_nHeads
bd_retry
bd_mode
bd_readyChanged

none).

Address of the driver routine that checks disk status (NULL if
none).

TRUE if the device is removable (for example, a floppy disk);
FALSE otherwise.

Total number of blocks on the device.

Number of bytes per block on the device.

Number of blocks per track on the device.

Number of heads (surfaces).

Number of times to retry failed reads or writes.

Device mode (write-protect status); generally set to O_RDWR.

TRUE if the device ready status has changed; initialize to TRUE
to cause the disk to be mounted.

Fields in the SEQ_DEYV Structure

Field Value

sd_segRd Address of the driver routine that reads blocks from the device.
sd_seqWrt Address of the driver routine that writes blocks to the device.
sd_ioctl Address of the driver routine that performs device 1/0 control.
sd_seqWrtFileMarks Address of the driver routine that writes file marks to the device.
sd_rewind Address of the driver routine that rewinds the sequential device.
sd_reserve Address of the driver routine that reserves a sequential device.
sd_release Address of the driver routine that releases a sequential device.

sd_readBIkLim

sd_load

sd_space

Address of the driver routine that reads the data block limits
from the sequential device.

Address of the driver routine that either loads or unloads a
sequential device.

Address of the driver routine that moves (spaces) the medium
forward or backward to end-of-file or end-of-record markers.

175

VxWorks 5.3.1
Programmer’s Guide

Table 3-15 Fields in the SEQ_DEYV Structure (Continued)

Field Value

sd_erase Address of the driver routine that erases a sequential device.

sd_reset Address of the driver routine that resets the device (NULL if
none).

sd_statusChk Address of the driver routine that checks sequential device
status (NULL if none).

sd_blkSize Block size of sequential blocks for the device. A block size of 0
means that variable block sizes are used.

sd_mode Device mode (write protect status).

sd_readyChanged TRUE if the device ready status has changed; initialize to TRUE

to cause the sequential device to be mounted.
sd_maxVarBlockLimit Maximum block size for a variable block.

sd_density Density of sequential access media.

Read Routine (Direct-Access Devices)

The driver must supply a routine to read one or more blocks from the device. For
a direct access device, the read-blocks routine must have the following arguments
and result:

STATUS xxBIkRd

DEVICE * pDev, [* pointer to device descriptor */
int startBlk, /* starting block to read */

int numBlks, /* number of blocks to read */

char * pBuf [* pointer to buffer to receive data */

)

In this and following examples, the routine names begin with xx. These names are
for illustration only, and do not have to be used by your device driver. VxWorks
references the routines by address only; the name can be anything.

pDev a pointer to the driver’s device descriptor structure, represented here
by the symbolic name DEVICE. (Actually, the file system passes the
address of the corresponding BLK_DEV structure; these are
equivalent, because the BLK_DEYV is the first item in the device
descriptor.) This identifies the device.

startBlk the starting block number to be read from the device. The file system
always uses block numbers beginning with zero for the start of the

176

3
I/O System

device. Any offset value used for this logical device must be added in
by the driver.

numBlks the number of blocks to be read. If the underlying device hardware
does not support multiple-block reads, the driver routine must do the
necessary looping to emulate this ability.

pBuf the address where data read from the disk is to be copied.

The read routine returns OK if the transfer is successful, or ERROR if a problem
occurs.

Read Routine (Sequential Devices)

The driver must supply a routine to read a specified number of bytes from the
device. The bytes being read are always assumed to be read from the current
location of the read/write head on the media. The read routine must have the
following arguments and result:

STATUS xxSegRd

DEVICE * pDeyv, /* pointer to device descriptor */
int numBytes, /* number of bytes to read */
char * buffer, [* pointer to buffer to receive data */
BOOL fixed /* TRUE => fixed block size */
)
pDev a pointer to the driver’s device descriptor structure, represented here

by the symbolic name DEVICE. (Actually, the file system passes the
address of the corresponding SEQ_DEV structure; these are
equivalent, because the SEQ_DEYV structure is the first item in the
device descriptor.) This identifies the device.

numBytes the number of bytes to be read.
buffer the buffer into which numBytes of data are read.

fixed specifies whether the read routine reads fixed-sized blocks from the
sequential device or variable-sized blocks, as specified by the file
system. If fixed is TRUE, then fixed sized blocks are used.

The read routine returns OK if the transfer is completed successfully, or ERROR if
a problem occurs.

177

VxWorks 5.3.1
Programmer’s Guide

Write Routine (Direct-Access Devices)

The driver must supply a routine to write one or more blocks to the device. The
definition of this routine closely parallels that of the read routine. For direct-access
devices, the write routine is as follows:

STATUS xxBIkWrt

DEVICE * pDeyv, [* pointer to device descriptor */
int startBlk, /* starting block for write */

int numBlks, /* number of blocks to write */
char * pBuf [* ptr to buffer of data to write */

)
pDev a pointer to the driver’s device descriptor structure.

startBlk the starting block number to be written to the device.

numBlks the number of blocks to be written. If the underlying device hardware
does not support multiple-block writes, the driver routine must do the
necessary looping to emulate this ability.

pBuf the address of the data to be written to the disk.

The write routine returns OK if the transfer is successful, or ERROR if a problem
occurs.

Write Routine (Sequential Devices)

The driver must supply a routine to write a specified number of bytes to the device.
The bytes being written are always assumed to be written to the current location
of the read/write head on the media. For sequential devices, the write routine is as

follows:
STATUS xxWrtTape

(
DEVICE * pDev, [* ptr to SCSI sequential device info */
int numBytes, /* total bytes or blocks to be written */
char * buffer, [* ptr to input data buffer ~ */
BOOL fixed * TRUE => fixed block size */
)

pDev a pointer to the driver’s device descriptor structure.

numBytes the number of bytes to be written.

buffer the buffer from which numBytes of data are written.

178

3
I/O System

fixed specifies whether the write routine reads fixed-sized blocks from the
sequential device or variable-sized blocks, as specified by the file
system. If fixed is TRUE, then fixed sized blocks are used.

The write routine returns OK if the transfer is successful, or ERROR if a problem
occurs.

I/O Control Routine

The driver must provide a routine that can handle 170 control requests. In
VxWorks, most 1/0 operations beyond basic file handling are implemented
through ioctl() functions. The majority of these are handled directly by the file
system. However, if the file system does not recognize a request, that request is
passed to the driver’s I/0 control routine.

Define the driver’s I/0 control routine as follows:

STATUS xxloctl

DEVICE * pDeyv, [* pointer to device descriptor */
int funcCode, /*ioctl() function code */
int arg [* function-specific argument */
)
pDev a pointer to the driver’s device descriptor structure.

funcCode the requested ioctl() function. Standard VxWorks 1/0 control
functions are defined in the include file ioLib.h. Other user-defined
function code values can be used as required by your device driver.
The 1/0 control functions supported by the dosFs, rt11Fs, rawFs, and
tapeFs are summarized in 4. Local File Systems in this manual.

arg specific to the particular ioctl() function requested. Not all ioctl()
functions use this argument.

The driver’s 1/0 control routine typically takes the form of a multi-way switch
statement, based on the function code. The driver’s I/0 control routine must
supply a default case for function code requests it does not recognize. For such
requests, the 1/0 control routine setserrno to S_ioLib_ UNKNOWN_REQUEST and
returns ERROR.

The driver’s I/0 control routine returns OK if it handled the request successfully;
otherwise, it returns ERROR.

179

VxWorks 5.3.1
Programmer’s Guide

Device-Reset Routine

The driver usually supplies a routine to reset a specific device, but it is not
required. This routine is called when a VxWorks file system first mounts a disk or
tape, and again during retry operations when a read or write fails.

Declare the driver’s device-reset routine as follows:
STATUS xxReset

(
DEVICE* pDev
)

pDev a pointer to the driver’s device descriptor structure.

When called, this routine resets the device and controller. Do not reset other
devices, if it can be avoided. The routine returns OK if the driver succeeded in
resetting the device; otherwise, it returns ERROR.

If no reset operation is required for the device, this routine can be omitted. In this
case, the device-creation routine sets the xx_reset field in the BLK_DEV or
SEQ_DEV structure to NULL.

In this and following examples, the names of fields in the BLK_DEV and SEQ_DEV
structures are parallel except for the initial letters bd_ or sd_. In these cases, the
initial letters are represented by xx_, as in the xx_reset field to represent both the
bd_reset field and the sd_reset field.

Status-Check Routine

If the driver provides a routine to check device status or perform other preliminary
operations, the file system calls this routine at the beginning of each open() or
creat() on the device.

Define the status-check routine as follows:
STATUS xxStatusChk

(
DEVICE * pDev [* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.
The routine returns OK if the open or create operation can continue. If it detects a
problem with the device, it sets errno to some value indicating the problem, and

returns ERROR. If ERROR is returned, the file system does not continue the
operation.

180

3
I/O System

A primary use of the status-check routine is to check for a disk change on devices
that do not detect the change until after a new disk is inserted. If the routine
determines that a new disk is present, it sets the bd_readyChanged field in the
BLK_DEV structure to TRUE and returns OK so that the open or create operation
can continue. The new disk is then mounted automatically by the file system. (See
Change in Ready Status, p.181.)

Similarly, the status check routine can be used to check for a tape change. This
routine determines whether a new tape has been inserted. If a new tape is present,
the routine sets the sd_readyChanged field in the SEQ_DEV structure to TRUE and
returns OK so that the open or create operation can continue. The device driver
should not be able to unload a tape, nor should you physically eject a tape, while
a file descriptor is open on the tape device.

If the device driver requires no status-check routine, the device-creation routine
sets the xx_statusChk field in the BLK_DEV or SEQ_DEV structure to NULL.

Write-Protected Media

The device driver may detect that the disk or tape in place is write-protected. If this
is the case, the driver sets the xx_mode field in the BLK_DEV or SEQ_DEV structure
to O_RDONLY. This can be done at any time (even after the device is initialized for
use with the file system). The file system checks this value and does not allow
writes to the device until the xx_mode field is changed (to O_RDWR or
O_WRONLY) or the file system’s mode change routine (for example,
dosFsModeChange()) is called to change the mode. (The xx_mode field is changed
automatically if the file system’s mode change routine is used.)

Change in Ready Status

The driver informs the file system whenever a change in the device’s ready status
is recognized. This can be the changing of a floppy disk, changing of the tape
medium, or any other situation that makes it advisable for the file system to
remount the disk.

To announce a change in ready status, the driver sets the xx_readyChanged field
in the BLK_DEV or SEQ_DEV structure to TRUE. This is recognized by the file
system, which remounts the disk during the next 170 initiated on the disk. The file
system then sets the xx_readyChanged field to FALSE. The xx_readyChanged
field is never cleared by the device driver.

181

VxWorks 5.3.1
Programmer’s Guide

Setting xx_readyChanged to TRUE has the same effect as calling the file system’s
ready-change routine (for example, dosFsReadyChange()) or calling ioctl() with
the FIODISKCHANGE function code.

An optional status-check routine (see Status-Check Routine, p.180) can provide a
convenient mechanism for asserting a ready-change, particularly for devices that
cannot detect a disk change until after the new disk is inserted. If the status-check
routine detects that a new disk is present, it sets xx_readyChanged to TRUE. This
routine is called by the file system at the beginning of each open or create
operation.

Write-File-Marks Routine (Sequential Devices)

The sequential driver must provide a routine that can write file marks onto the tape
device. The write file marks routine must have the following arguments

STATUS xxWrtFileMarks
DEVICE * pDev, [* pointer to device descriptor */
int numMarks, /* number of file marks to write */

BOOL shortMark /* short or long file marks */
)

pDev a pointer to the driver’s device descriptor structure.
numMarks the number of file marks to be written sequentially.

shortMark the type of file mark (short or long). If shortMark is TRUE, short marks
are written.

The write file marks routine returns OK if the file marks are written correctly on
the tape device; otherwise, it returns ERROR.

Rewind Routine (Sequential Devices)

The sequential driver must provide a rewind routine in order to rewind tapes in
the tape device. The rewind routine is defined as follows:

STATUS xxRewind

DEVICE* pDev /* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.

When called, this routine rewinds the tape in the tape device. The routine returns
OK if completion is successful; otherwise, it returns ERROR.

182

3
I/O System

Reserve Routine (Sequential Devices)

The sequential driver can provide a reserve routine that reserves the physical tape
device for exclusive access by the host that is executing the reserve routine. The
tape device remains reserved until it is released by that host, using a release
routine, or by some external stimulus.

The reserve routine is defined as follows:

STATUS xxReserve

DEVICE* pDev /* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.

If a tape device is reserved successfully, the reserve routine returns OK. However,
if the tape device cannot be reserved or an error occurs, it returns ERROR.

Release Routine (Sequential Devices)

This routine releases the exclusive access that a host has on a tape device. The tape
device is then free to be reserved again by the same host or some other host. This
routine is the opposite of the reserve routine and must be provided by the driver if
the reserve routine is provided.

The release routine is defined as follows:
STATUS xxReset

DEVICE* pDev /* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.

If the tape device is released successfully, this routine returns OK. However, if the
tape device cannot be released or an error occurs, this routine returns ERROR.

Read-Block-Limits Routine (Sequential Devices)

The read-block-limits routine can poll a tape device for its physical block limits.
These block limits are then passed back to the file system so the file system can
decide the range of block sizes to be provided to a user.

The read-block-limits routine is defined as follows:

183

VxWorks 5.3.1
Programmer’s Guide

STATUS xxReadBIKkLim

DEVICE * pDev, [* pointer to device descriptor */

int *maxBlkLimit, /* maximum block size for device */

int *minBIkLimit /* minimum block size for device */

)
pDev a pointer to the driver’s device descriptor structure.
maxBIkLimit

returns the maximum block size that the tape device can handle to the
calling tape file system.

minBIkLimit
returns the minimum block size that the tape device can handle.

The routine returns OK if no error occurred while acquiring the block limits;
otherwise, it returns ERROR.

Load/Unload Routine (Sequential Devices)

The sequential device driver must provide a load/unload routine in order to
mount or unmount tape volumes from a physical tape device. Loading means that
avolume is being mounted by the file system. This is usually done upon an open()
or a creat(). However, a device should be unloaded or unmounted only when the
file system wants to eject the tape volume from the tape device.

The load/unload routine is defined as follows:
STATUS xxLoad

DEVICE* pDev, /[*pointer to device descriptor */

BOOL load /*load or unload device */
)
pDev a pointer to the driver’s device descriptor structure.
load aboolean variable that determines if the tape is loaded or unloaded. If

load is TRUE, the tape is loaded. If load is FALSE, the tape is unloaded.

The load/unload routine returns OK if the load or unload operation ends
successfully; otherwise, it returns ERROR.

184

3
I/O System

Space Routine (Sequential Devices)

The sequential device driver must provide a space routine that moves, or spaces,

the tape medium forward or backward. The amount of distance that the tape
spaces depends on the kind of search that must be performed. In general, tapes can

be searched by end-of-record marks, end-of-file marks, or other types of device-

specific markers.

The basic definition of the space routine is as follows; however, other arguments
can be added to the definition:

STATUS xxSpace

DEVICE * pDev, [* pointer to device descriptor */
int count, /* number of spaces */
int spaceCode /* type of space */
)
pDev a pointer to the driver’s device descriptor structure.
count specifies the direction of search. A positive count value represents

forward movement of the tape device from its current location
(forward space); a negative count value represents a reverse
movement (back space).

spaceCode defines the type of space mark that the tape device searches for on the
tape medium. The basic types of space marks are end-of-record and
end-of-file. However, different tape devices may support more
sophisticated kinds of space marks designed for more efficient
maneuvering of the medium by the tape device.

If the device is able to space in the specified direction by the specified count and
space code, the routine returns OK; if these conditions cannot be met, it returns
ERROR.

Erase Routine (Sequential Devices)
The sequential driver must provide a routine that allows a tape to be erased. The
erase routine is defined as follows:
STATUS xxErase

DEVICE* pDev /* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.

The routine returns OK if the tape is erased; otherwise, it returns ERROR.

185

VxWorks 5.3.1
Programmer’s Guide

3.9.5 Driver Support Libraries

The subroutine libraries in Table 3-16 may assist in the writing of device drivers.
Using these libraries, drivers for most devices that follow standard protocols can
be written with only a few pages of device-dependent code. See the reference entry
for each library for details.

Table 3-16 VxWorks Driver Support Routines

Library Description

errnoLib Error status library

ftpLib ARPA File Transfer Protocol library
ioLib 170 interface library

iosLib 170 system library

intLib Interrupt support subroutine library
remLib Remote command library

rngLib Ring buffer subroutine library
ttyDrv Terminal driver

wdLib Watchdog timer subroutine library

186

Local File Systems

4.1 ([ge o [UTox 110] o TR TR PP 191
4.2 MS-DOS-Compatible File System: dOSFS cccceviiiiiieniniic e 191
4.2.1 Disk Organizationccccccoieiiiieiinicie e 192
CHUSTEI'S .. e 192

BOOL SECLON ... e 193

File Allocation Table ... 194

o011 | 1101 (o] YRS 195
SUDAITECIONIES ...t 195

FIlES e 196
VOIUME LabEl ..o 196

4.2.2 Initializing the dosFs File Systemcccccooviiiii i 197
4.2.3 Initializing a Device for Use with dOSFSccccoceviviiiiiiiciies 197
4.2.4 Volume Configurationcccccoviveiiiiciiiiese e 199
DOS_VOL_CONFIG FIeldsccoccoviiiieiieesece et 199
Calculating Configuration Valuesc.ccccooceviviieveiiienniieseen 201
Standard Disk Configurationscccceeviiieii i 202

4.25 Changes In Volume Configurationc.ccccccevveveiieiiesiesie s 203
4.2.6 Using an Already Initialized Diskcccccoovvviviiiiiiiiieceeecees 204
4.2.7 Accessing Volume Configuration Informationc.cccoeevvenes 205
4.2.8 MouNting VOIUMESccveiiiieieciee sttt 205
42,9 R IZO e 206

187

4.3

4.4

VxWorks 5.3.1
Programmer’s Guide

4.2.10 Opening the Whole Device (Raw Mode)cccceoerirerenenerinnne 206
4.2.11 Creating SUDAIreCtOrieScceoiiieiiiie e 207
4.2.12 RemoVving SUDBITECLONIESccccvvieiiciececerr e 207
4.2.13 DireCtory ENrIiesccccoieeii it 207
4.2.14 Reading DireCtory ENrIieSccccceiiiieiicecc s 208
4.2.15 File ATDULES ..o 208
4.2.16 File Date and TiMe ..ot 210
4.2.17 Changing DisSKScccoiiiiiiic s 211

Unmounting VOIUMES ... 211

Announcing Disk Changes with Ready-Changec.c.......... 212

Disks with No Change Notificationc.ccccoeveviiievi i 213

Synchronizing VOIUMEScccocviiiieicecce e 213

AULO-SYNC MOUEcoviiiiiiieece et 214
4.2.18 LoNg NamMe SUPPOIToceiiiiieieeie et 214
4.2.19 Contiguous File SUPPOIT ..o 215
4.2.20 1/0 Control Functions Supported by dosFsLibcccccceeeee. 217
4.2.21 Booting from a Local dosFs File System Using SCSI 218
RT-11-Compatible File System: MLILIFS ...cccooiiiieiiiiieieseere e 220
4.3.1 Disk Organizationccccccooeiiiiieiisie s 220
4.3.2 Initializing the rt11Fs File SyStemccccccoiveviiieieniece e 220
4.3.3 Initializing a Device for Use with rt11Fsccccooviiviiiieiiciinennns 221
4.3.4 Mounting VOIUMEScccoeiiiieiecie et 222
435 FHEIZO o 222
4.3.6 Opening the Whole Device (Raw Mode)cccceovririneniierinnne 222
4.3.7 Reclaiming Fragmented Free Disk Spacec.ccocvenineniienicnne. 223
4.3.8 Changing DisKSccccciiiiiiiie e 223

Disks with No Change Notificationc.ccccoeveiiiieie i 224
4.3.9 1/0 Control Functions Supported by rt11FsLib ... 224
RaW File SYSIEM: FAWFS ..viiiiiiiiiciiie sttt aeessee b 225

188

4.5

4
Local File Systems

441 Disk Organizationccccccieeieiieiisiecse e 225
4.4.2 Initializing the rawFs File Systemccccooviviiii i 225
4.4.3 Initializing a Device for Use with the rawFs File System 226
444 MouNting VOIUMEScoveiiiieie ettt 226
445 FIle 1O e 227
446 Changing DisSKScccoieiiiiiiiec e 227
Unmounting VOIUMES ... 227
Announcing Disk Changes with Ready-Changec.ccc......... 228
Disks with No Change Notificationccocvvviieiicienicccieen, 228
Synchronizing VOIUMES ... 229
4.4.7 1/0 Control Functions Supported by rawFsLibccccceeee. 229
Tape File SYSteM: tAPEFS ..vviiiieiieiiie et 230
451 Tape OrganiZationc.cocoeieieiiiieinescsce e 230
45.2 Using the tapeFs File SYStem ... 231
Initializing the tapeFs File SyStem ..., 231
Initializing a Device for Use with the tapeFs File System 231
Mounting VOIUMESccviiiiiciece e 233
Modes Of OPEIatioNcooeieiiiiiieie e 233
FIIE 170 e 233
Changing TAPEScvoieeiiiiiiee e 234
170 Control Functions Supported by tapeFsLibcccccceeeee. 234

189

VxWorks 5.3.1

Programmer’s Guide

List of Tables

Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 4-9

List of Figures

Figure 4-1
Figure 4-2

List of Examples
Example 4-1
Example 4-2
Example 4-3

Example 4-4

190

DOS_VOL_CONFIG Fieldscccccoovvrreeiiierecereeeeeee, 199
dosFs Volume OPLioNS ... 200
MS-DOS Floppy Disk Configurationsc.ccoceeeevennee. 203
Flags in the File-Attribute Bytecccooviviiiiiiiin 209
170 Control Functions Supported by dosFsLib 217
170 Control Functions Supported by rt11FsLib 224
170 Control Functions Supported by rawFsLib 229
170 Control Functions Supported by tapeFsLib 234
MTIOCTOP OPEIatioNSccceivererinierieiiriererieienieieseeesneeanes 235
MS-DOS Disk Organizationcccceeevvevvienenereseesenenns 193
FAT ENTHIES oovviiciieeee s 195
Setting DosFs File Attributes ..., 210
Creating a DosFs Contiguous Filec.ccccooeiiiiiennen, 215

Finding the Maximum Contiguous Area on a DosFs Device
216
Tape Device Configuration ..o, 232

4
Local File Systems

4.1 Introduction

This chapter discusses the organization, configuration, and use of VxWorks file
systems. VxWorks provides two local file systems appropriate for real-time use
with block devices (disks): one is compatible with MS-DOS file systems and the
other with the RT-11 file system. The support libraries for these file systems are
dosFsLib and rt11FsLib. VxWorks also provides a simple raw file system, which
treats an entire disk much like a single large file. The support library for this “file
system” is rawFsLib. In addition, VxWorks provides a file system for tape devices
that do not use a standard file or directory structure on tape. The tape volume is
treated much like a raw device where the entire volume is a large file. The support
library for this file system is tapeFsLib.

In VxWorks, the file system is not tied to a specific type of block device or its driver.
VxWorks block devices all use a standard interface so that file systems can be freely
mixed with device drivers. Alternatively, you can write your own file systems that
can be used by drivers in the same way, by following the same standard interfaces
between the file system, the driver, and the 1/0 system. VxWorks I/0 architecture
makes it possible to have multiple file systems, even of different types, in a single
VxWorks system. The block device interface is discussed in 3.9.4 Block Devices,
p.171.

4.2 MS-DOS-Compatible File System: dosFs

Diskettes formatted using the dosFs file system are compatible with MS-DOS
diskettes up to and including release 6.2. Hard disks initialized by the two file
systems have slightly different formats. However, the data itself is compatible and
dosFs can be configured to use a disk formatted by MS-DOS.

191

VxWorks 5.3.1
Programmer’s Guide

The dosFs file system offers considerable flexibility appropriate to the varying
demands of real-time applications. Major features include:

= A hierarchical arrangement of files and directories, allowing efficient
organization and permitting an arbitrary number of files to be created on a
volume.

= A choice of contiguous or non-contiguous files on a per-file basis. Non-
contiguous files result in more efficient use of available disk space, while
contiguous files offer enhanced performance.

= Compatibility with widely available storage and retrieval media. Diskettes
created with VxWorks (that do not use dosFs extended filenames) and MS-
DOS PCs and other systems can be freely interchanged. Hard disks are
compatible if the partition table is accounted for.

= The ability to boot VxWorks from any local SCSI device that has a dosFs file
system.

= The ability to use longer file names than the 8-character filename plus 3-
character extension (8.3) convention allowed by MS-DOS.

= NFS (Network File System) support.

4.2.1 Disk Organization

Clusters

The MS-DOS/dosFs file system provides the means for organizing disk data in a
flexible manner. It maintains a hierarchical set of named directories, each
containing files or other directories. Files can be appended; as they expand, new
disk space is allocated automatically. The disk space allocated to a file is not
necessarily contiguous, which results in a minimum of wasted space. However, to
enhance its real-time performance, the dosFs file system allows contiguous space
to be pre-allocated to files individually, thereby minimizing seek operations and
providing more deterministic behavior.

The general organization of an MS-DOS/dosFs file system is shown in Figure 4-1
and the various elements are discussed in the following sections.

The disk space allocated to a file in an MS-DOS/dosFs file system consists of one
or more disk clusters. A cluster is a set of contiguous disk sectors.! For floppy disks,
two sectors generally make up a cluster; for fixed disks, there can be more sectors

192

Figure 4-1

Boot Sector

4
Local File Systems

MS-DOS Disk Organization

Boot Sector Sector 0

File Allocation Table (FAT)

(possibly multiple copies)

Root Directory

Files and Subdirectories

NOTE: If the number of reserved sectors (dosvc_nResrvd)
is greater than 1, the first FAT copy does not immediately
follow the boot sector.

per cluster. A cluster is the smallest amount of disk space the file system can
allocate at a time. A large number of sectors per cluster allows a larger disk to be
described in a fixed-size File Allocation Table (FAT; see File Allocation Table, p.194),
but can result in wasted disk space.

The first sector on an MS-DOS/dosFs hard disk or diskette is called the boot sector.
This sector contains a variety of configuration data. Some of the data fields

. In this and subsequent sections covering the dosFs file system, the term sector refers to the

minimum addressable unit on a disk, because this is the term used by most MS-DOS docu-
mentation. In VxWorks, the units are normally referred to as blocks, and a disk device is
called a block device.

193

VxWorks 5.3.1
Programmer’s Guide

describe the physical properties of the disk (such as the total number of sectors),
and other fields describe file system variables (such as the size of the root
directory).

The boot sector information is written to a disk when it is initialized. The dosFs file
system can use diskettes that are initialized on another system (for example, using
the FORMAT utility on an MS-DOS PC), or VxWorks can initialize the diskette,
using the FIODISKINIT function of the ioctl() call.

As the MS-DOS standard has evolved, various fields have been added to the boot
sector definition. Disks initialized under VxWorks use the boot sector fields
defined by MS-DOS version 5.0.

When MS-DOS initializes a hard disk, it writes a partition table in addition to the
boot sector. VxWorks does not create such a table. Therefore hard disks initialized
by the two systems are not identical. VxWorks can read files from a disk formatted
by MS-DOS if the block offset parameter in the device creation routine points
beyond the partition table to the first byte of the data area.

File Allocation Table

Each MS-DOS/dosFs volume contains a File Allocation Table (FAT). The FAT
contains an entry for each cluster on the disk that can be allocated to a file or
directory. When a cluster is unused (available for allocation), its entry is zero. If a
cluster is allocated to afile, its entry is the cluster number of the next portion of the
file. If a cluster is the last in a file, its entry is -1. Thus, the representation of a file
(or directory) consists of a linked list of FAT entries. In the example shown in
Figure 4-2, one file consists of clusters 2, 300, and 500. Cluster 3 is unused.

The FAT uses either 12 or 16 bits per entry. Disk volumes that contain up to 4085
clusters use 12-bit entries; disks with more than 4085 clusters use 16-bit entries. The
entries (particularly 12-bit entries) are encoded in a specific manner, done
originally to take advantage of the Intel 8088 architecture. However, all FAT
handling is done by the dosFs file system; thus the encoding and decoding is of no
concern to VxWorks applications.

A volume typically contains multiple copies of the FAT. This redundancy allows
data recovery in the event of a media error in the first FAT copy.

A NOTE: The dosFs file system maintains multiple FAT copies if that is the specified
configuration; however, the copies are not automatically used in the event of an
error.

194

Figure 4-2

Root Directory

Subdirectories

4
Local File Systems

FAT Entries
cluster FAT
0
1
2 300
3 0
300 500
500 -1

The size of the FAT and the number of FAT copies are determined by fields in the
boot sector. For disks initialized using the dosFs file system, these parameters are
specified during the dosFsDevInit() call by setting fields in the volume
configuration structure, DOS_VOL_CONFIG.

Each MS-DOS/dosFs volume contains a root directory. The root directory always
occupies a set of contiguous disk sectors immediately following the FAT copies.
The disk area occupied by the root directory is not described by entries in the FAT.

The root directory is of a fixed size; this size is specified by a field in the boot sector
as the maximum allowed number of directory entries. For disks initialized using
the dosFs file system, this size is specified during the dosFsDevlnit() call, by
setting a field in the volume configuration structure, DOS_VOL_CONFIG.

Because the root directory has a fixed size, an error is returned if the directory is
full and an attempt is made to add entries to it.

For more information on the contents of the directory entry, see 4.2.13 Directory
Entries, p.207.

In addition to the root directory, MS-DOS/dosFs volumes sometimes contain a
hierarchy of subdirectories. Like the root directory, subdirectories contain entries

195

Files

Volume Label

VxWorks 5.3.1
Programmer’s Guide

for files and other subdirectories; however, in other ways they differ from the root
directory and resemble files:

= First, each subdirectory is described by an entry in another directory, as is a
file. Such a directory entry has a bit set in the file-attribute byte to indicate that
it describes a subdirectory. Also, subdirectories, unlike the root directory, have
user-assigned names.

= Second, the disk space allocated to a subdirectory is composed of a set of disk
clusters, linked by FAT entries. This means that a subdirectory can grow as
entries are added to it, and that the subdirectory is not necessarily made up of
contiguous clusters. The root directory, unlike subdirectories, can be made up
of any number of sectors, not necessarily equal to a whole number of clusters.

= Third, subdirectories always contain two special entries. The “.” entry refers to

the subdirectory itself, while the ““..” entry refers to the subdirectory’s parent
directory. The root directory does not contain these special entries.

The disk space allocated to a file in the MS-DOS/dosFs file system is a set of
clusters that are chained together through entries in the FAT. A file is not
necessarily made up of contiguous clusters; the various clusters can be located
anywhere on the disk and in any order.

Each file has a descriptive entry in the directory where it resides. This entry
contains the file’s name, size, last modification date and time, and a field giving
several important attributes (read-only, system, hidden, modified since last
archived). It also contains the starting cluster number for the file; subsequent
clusters are located using the FAT.

An MS-DOS/dosFs disk can have a volume label associated with it. The volume
label is a special entry in the root directory. Rather than containing the name of a
file or subdirectory, the volume label entry contains a string used to identify the
volume. This string can contain up to 11 characters. The volume label entry is
identified by a special value of the file-attribute byte in the directory entry.

Note that a volume label entry is not reported using Is(). However, it does occupy
one of the fixed number of entries in the root directory.

196

4
Local File Systems

The volume label can be added to a dosFs volume by using the ioctl() call with the
FIOLABELSET function. This adds a label entry to the volume’s root directory if
none exists or changes the label string in an existing volume label entry. The
volume label entry takes up one of the fixed humber of root directory entries;
attempting to add an entry when the root directory is full results in an error.

The current volume label string for a volume can be obtained by calling the ioctl()
call with the FIOLABELGET function. If the volume has no label, this call returns
ERROR and sets errno to S_dosFsLib_NO_LABEL.

Disks initialized under VxWorks or under MS-DOS 5.0 (or later) also contain the
volume label string within a boot sector field.

4.2.2 Initializing the dosFs File System

Note that before any other operations can be performed, the dosFs file system
library, dosFsLib, must be initialized by calling dosFsInit(). This routine takes a
single parameter, the maximum number of dosFs file descriptors that can be open
at one time. That number of file descriptors is allocated during initialization; a
descriptor is used each time your application opens a file, directory, or the file
system device.

The dosFsInit() routine also makes an entry for the file system in the 1/0 system
driver table (with iosDrvinstall()). This entry specifies entry points for dosFs file
operations and is used for all devices that use the dosFs file system. The driver
number assigned to the dosFs file system is recorded in a global variable
dosFsDrvNum.

The dosFslInit() routine is normally called by the usrRoot() task after starting the
VXWorks system. To use this initialization, define INCLUDE_DOSFS in the
configuration file configAll.h, and set NUM_DOSFS_FILES to the desired
maximum open file count.

4.2.3 Initializing a Device for Use with dosFs

After the dosFs file system is initialized, the next step is to create one or more
devices. Devices are created by the device driver’s device creation routine
(xxDevCreate()). The driver routine returns a pointer to a block device descriptor
structure (BLK_DEV). The BLK_DEYV structure describes the physical aspects of the
device and specifies the routines that the device driver provides to a file system.
For more information on block devices, see 3.9.4 Block Devices, p.171.

197

VxWorks 5.3.1
Programmer’s Guide

Immediately after its creation, the block device has neither aname nor afile system
associated with it. To initialize a block device for use with the dosFs file system, the
already-created block device must be associated with dosFs and a name must be
assigned to it. This is done with the dosFsDevInit() routine. Its parameters are the
name to be used to identify the device, a pointer to the block device descriptor
structure (BLK_DEV), and a pointer to the volume configuration structure
DOS_VOL_CONFIG (see 4.2.4 Volume Configuration, p.199). For example:
DOS_VOL_DESC *pVolDesc;

DOS_VOL_CONFIG configStruct;
pVolDesc = dosFsDevinit ("DEV1:", pBlkDev, &configStruct);

The dosFsDevlnit() call performs the following tasks:

Assigns the specified name to the device and enters the device in the I/0
system device table (with iosDevAdd()).

Allocates and initializes the file system’s volume descriptor for the device.

Returns a pointer to the volume descriptor. This pointer is subsequently used
to identify the volume during certain file system calls.

Initializing the device for use with dosFs does not format the disk, nor does it
initialize the disk with MS-DOS structures (root directory, FAT, and so on). This
permits using dosFsDevInit() with disks that already have data in an existing MS-
DOS file system; see 4.2.6 Using an Already Initialized Disk, p.204. Formatting and
DOS disk initialization can be done using the ioctl() functions FIODISKFORMAT
and FIODISKINIT, respectively.

The dosFsMkfs() call provides an easier method of initializing a dosFs device; it
does the following:

Provides a set of default configuration values.
Calls dosFsDevlnit().
Initializes the disk structures using ioctl() with the FIODISKINIT function.

The routine dosFsMkfs() by default does not enable any dosFs-specific volume
options (DOS_OPT_CHANGENOWARN, DOS_OPT_AUTOSYNC,
DOS_OPT_LONGNAMES, DOS_OPT_LOWERCASE, or DOS_OPT_EXPORT). To
enable any combination of these options, use dosFsMkfsOptionsSet() before
calling dosFsMkfs() to initialize the disk. For more information on the default
configuration values, see the manual entry for dosFsMkfs().

198

4
Local File Systems

4.2.4 Volume Configuration

Table 4-1

The volume configuration structure, DOS_VOL_CONFIG, is used during the
dosFsDevlInit() call. This structure contains various dosFs file system variables
describing the layout of data on the disk. Most of the fields in the structure
correspond to those in the boot sector. Table 4-1 lists the fields in the
DOS_VOL_CONFIG structure.

DOS_VOL_CONFIG Fields

Field Description

dosvc_mediaByte Media-descriptor byte

dosvc_secPerClust Number of sectors per cluster

dosvc_nResrvd Number of reserved sectors that precede the first FAT copy; the

minimum is 1 (the boot sector)

dosvc_nFats Number of FAT copies

dosvc_secPerFat Number of sectors per FAT copy
dosvc_maxRootEnts Maximum number of entries in root directory
dosvc_nHidden Number of hidden sectors, normally 0
dosvc_options VxWorks-specific file system options
dosvc_reserved Reserved for future use by Wind River Systems

Calling dosFsConfiglnit()is a convenient way to initialize DOS_VOL_CONFIG. It
takes the configuration variables as parameters and fills in the structure. This is
useful for initializing devices interactively from the Tornado shell (see the Tornado
User’s Guide: Shell). The DOS_VOL_CONFIG structure must be allocated before
dosFsConfigInit() is called.

DOS_VOL_CONFIG Fields

All but the last two DOS_VOL_CONFIG fields in Table 4-1 describe standard MS-
DOS characteristics. The field dosvc_options is specific to the dosFs file system.
Possible options for this field are shown in Table 4-2.

199

Table 4-2

VxWorks 5.3.1
Programmer’s Guide

dosFs Volume Options

Option Hex Value Description

DOS_OPT_CHANGENOWARN Ox1 Disk may be changed without warning.

DOS_OPT_AUTOSYNC 0x2 Synchronize disk during 1/0.

DOS OPT_LONGNAMES 0x4 Use case-sensitive file names not
restricted to 8.3 convention.

DOS_OPT_EXPORT 0x8 Allow exporting using NFS.

DOS OPT_LOWERCASE 0x40 Use lower case filenames on disk.

The first two options specify the action used to synchronize the disk buffers with
the physical device. The remaining options involve extensions to dosFs
capabilities.

DOS_OPT_CHANGENOWARN

Set this option if the device is a disk that can be replaced without being
unmounted or having its change in ready-status declared. In this situation,
check the disk regularly to determine whether it has changed. This causes
significant overhead; thus, we recommend that you provide a mechanism
that always synchronizes and unmounts a disk before it is removed, or at
least announces a change in ready-status. If such a mechanism is in place,
or if the disk is not removable, do not set this option. Auto-sync mode is
enabled automatically when DOS_OPT_CHANGENOWARN is set (see the
description for DOS_OPT_AUTOSYNC, next). For more information on
DOS_OPT_CHANGENOWARN, see 4.2.17 Changing Disks, p.211.

DOS_OPT_AUTOSYNC

200

Set this option to assure that directory and FAT data in the disk’s buffers
are written to the physical device as soon as possible after modification,
rather than only when the file is closed. This can be desirable in situations
where it is important that data be stored on the physical medium as soon
as possible so as to avoid loss in the event of a system crash. There is a
significant performance penalty incurred when using auto-sync mode;
limit its use, therefore, to circumstances where there is a threat to data
integrity.

However, DOS_OPT_AUTOSYNC does not make dosFs automatically
write data to disk immediately after every write(); doing so implies an
extreme performance penalty. If your application requires this effect, use
the ioctl() function FIOFLUSH after every call to write().

4
Local File Systems

Note that auto-sync mode is automatically enabled whenever
DOS_OPT_CHANGENOWARN is set. For more information on auto-sync
mode, see 4.2.17 Changing Disks, p.211.

DOS_OPT_LONGNAMES
Set this option to allow the use of case-sensitive file names, with name
lengths not restricted to MS-DOS’s 8.3 convention. For more information
on this option, see 4.2.18 Long Name Support, p.214.

DOS_OPT_EXPORT
Set this option to initialize file systems that you intend to export using
NFS. With this option, dosFs initialization creates additional in-memory
data structures that are required to support the NFS protocol. While this
option is necessary to initialize a file system that can be exported, it does
not actually export the file system. See Allowing Remote Access to VxWorks
Files through NFS, p.288.

DOS_OPT_LOWERCASE
Set this option to force filenames created by dosFs to use lowercase
alphabetical characters. (Normally, filenames are created using uppercase
characters, unless the DOS_OPT_LONGNAMES option is enabled.) This
option may be required if the dosFs volume is mounted by a PC-based
NFS client. This option has no effect if DOS_OPT_LONGNAMES is also
specified.

Calculating Configuration Values

The values for dosvc_secPerClust and dosvc_secPerFat in the DOS_VOL_CONFIG
structure must be calculated based on the particular device being used.

dosvc_secPerClust
This field specifies how many contiguous disk sectors make up a single
cluster. Because a cluster is the smallest amount of disk space that can be
allocated at a time, the size of a cluster determines how finely the disk
allocation can be controlled. A large number of sectors per cluster causes
more sectors to be allocated at a time and reduces the overall efficiency of
disk space usage. For this reason, it is generally preferable to use the
smallest possible number of sectors per cluster, although having less than
two sectors per cluster is generally not necessary.

The maximum size of a FAT entry is 16 bits; thus, there is a maximum of
65,536 (64KB, or 0x10000) clusters that can be described. This is therefore
the maximum number of clusters for a device. To determine the

201

VxWorks 5.3.1
Programmer’s Guide

appropriate number of sectors per cluster, divide the total number of
sectors on the disk (the bd_nBlocks field in the device’s BLK_DEV
structure) by 0x10000 (64KB). Round up the resulting value to the next
whole number. The final result is the number of sectors per cluster; place
this value in the dosvc_secPerClust field in the DOS_VOL_CONFIG
structure.

dosvc_secPerFat
This field specifies the number of sectors required on the disk for each
copy of the FAT. To calculate this value, first determine the total number of
clusters on the disk. The total number of clusters is equal to the total
number of sectors (bd_nBlocks in the BLK_DEV structure) divided by the
number of sectors per cluster. As mentioned previously, the maximum
number of clusters on a disk is 64KB.

The cluster count must then be multiplied by the size of each FAT entry: if
the total number of clusters is 4085 or less, each FAT entry requires 12 bits
(1%2 bytes); if the number of clusters is greater than 4085, each FAT entry
requires 16 bits (2 bytes). The result of this multiplication is the total
number of bytes required by each copy of the FAT. This byte count is then
divided by the size of each sector (the bd_bytesPerBIk field in the
BLK_DEV structure) to determine the number of sectors required for each
FAT copy; if there is any remainder, add one (1) to the result. Place this
final value in the dosvc_secPerFat field.

Assuming 512-byte sectors, the largest possible FAT (with entries
describing 64KB clusters) occupies 256 sectors per copy, calculated as
follows:

64KB entries x 2 bytes/entry
= 256 sectors

512 bytes/sector

Standard Disk Configurations

For floppy disks, a number of standard disk configurations are used in MS-DOS
systems. In general, these are uniquely identified by the media-descriptor byte
value (at least for a given size of floppy disk), although some manufacturers have
used duplicate values for different formats. Some widely used configurations are
summarized in Table 4-3.

Fixed disks do not use standard disk configurations because they are rerely
attached to a foreign system. Usually fixed disks use a media format byte of OxF8.

202

4
Local File Systems

Table 4-3 MS-DOS Floppy Disk Configurations

Capacity 160KB 180KB 320KB 360KB 1.2MB 720KB 1.44MB
Size 5.25" 5.25" 5.25" 5.25" 5.25" 3.5" 3.5"
Sides 1 1 2 2 2 2 2
Tracks 40 40 40 40 80 80 80
Sectors/Track 8 9 8 9 15 9 18
Bytes/Sector 512 512 512 512 512 512 512
secPerClust 1 1 2 2 1 2 1
nResrvd 1 1 1 1 1 1 1
nFats 2 2 2 2 2 2 2
maxRootEnts 64 64 112 112 224 112 224
mediaByte OXFE OxFC OxFF 0xFD 0xF9 0xF9 0xFO
secPerFat 1 2 1 2 7 3 9
nHidden 0 0 0 0 0 0 0

4.2.5 Changes In Volume Configuration

As mentioned previously, various disk configuration parameters are specified
when the dosFs file system device is first initialized using dosFsDevInit(). These
parameters are kept in the volume descriptor, DOS_VOL_DESC, for the device.
However, it is possible for a disk with different parameter values to be placed in a
drive after the device is already initialized. If another disk is substituted for the one
with the configuration parameters that were last entered into the volume
descriptor, the configuration parameters of the new disk must be obtained before
it can be used.

When a disk is mounted, the boot sector information is read from the disk. This
data is used to update the configuration data in the volume descriptor. Note that
this happens the first time the disk is accessed, and again after the volume is
unmounted (using dosFsVolUnmount()) or a ready-change operation is
performed. For more information, see 4.2.17 Changing Disks, p.211.

This automatic re-initialization of the configuration data has an important
implication. The volume descriptor data is used when initializing a disk (with

203

VxWorks 5.3.1
Programmer’s Guide

FIODISKINIT); thus, the disk is initialized with the configuration of the most
recently mounted disk, regardless of the original specification during
dosFsDevlInit(). Therefore, we recommend that you use FIODISKINIT
immediately after dosFsDevlInit(), before any disk is mounted. (The device is
opened in raw mode, the FIODISKINIT ioctl() function is performed, and the
device is closed.)

4.2.6 Using an Already Initialized Disk

If you are using a disk that is already initialized with an MS-DOS boot sector, FAT,
and root directory (for example, by using the FORMAT utility in MS-DOS), it is not
necessary to provide the volume configuration data during dosFsDeviInit().

You can omit the MS-DOS configuration data by specifying a NULL pointer instead
of the address of a DOS_VOL_CONFIG structure during dosFsDevlInit(). However,
only use this method if you are sure that the first use of the volume is with a
properly formatted and initialized disk.

When mounting an already initialized disk, all standard MS-DOS configuration
values are obtained from the disk’s boot sector. However, the options that are
specific to dosFs must be determined differently.

Disks that are already initialized with the DOS_OPT_LONGNAMES (case-sensitive
file names not restricted to 8.3 convention) option are recognized automatically by
a specific volume ID string that is placed in the boot sector.

The DOS_OPT_CHANGENOWARN, DOS_OPT_AUTOSYNC,
DOS_OPT_LOWERCASE, and DOS_OPT_EXPORT options are recorded only in
memory, not on disk. Therefore they cannot be detected when you initialize a disk
with NULL in place of the DOS_VOL_CONFIG structure pointer; you must re-
enable them each time you mount a disk. You can set default values for these
options with the dosFsDevInitOptionsSet() routine: the defaults apply to any
dosFs file systems you initialize with dosFsDevInit() thereafter, unless you supply
explicit DOS_VOL_CONFIG information.

You can also enable the DOS_OPT_CHANGENOWARN and DOS_OPT_AUTOSYNC
options dynamically during disk operation, rather than during initialization, with
the dosFsVolOptionsSet() routine.

204

4
Local File Systems

4.2.7 Accessing Volume Configuration Information

Disk configuration information is available using dosFsConfigShow()2 and
dosFsConfigGet() from the Tornado shell. See the Tornado User’s Guide: Shell.

Use dosFsConfigShow() to display configuration information such as the largest
contiguous area and the device name. For example:

-> dosFsConfigShow "/RAM1/"
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

device name: /RAM1/
total number of sectors: 400

bytes per sector: 512

media byte: 0xf0

of sectors per cluster: 2

of reserved sectors: 1

of FAT tables: 2

of sectors per FAT: 1

max # of root dir entries: 112

of hidden sectors: 0

removable medium: FALSE
disk change w/out warning: not enabled
auto-sync mode: not enabled
long file names: not enabled
exportable file system: not enabled
volume mode: O_RDWR (read/write)
available space: 199680 bytes
max avail. contig space: 199680 bytes

The dosFsConfigGet() routine stores the disk configuration information in a
DOS_VOL_CONFIG structure. This can be useful if you have a pre-existing disk
and want to initialize a new disk with the same parameters, or if you initialized the
dosFs file system on the disk using dosFsMkfs() and need to obtain the actual
configuration values that were calculated.

4.2.8 Mounting Volumes

A disk volume is mounted automatically, generally during the first open() or
creat() operation for a file or directory on the disk. (Certain ioctl() calls also cause
the disk to be mounted.) If a NULL pointer is specified instead of the address of a
DOS_VOL_CONFIG structure during the dosFsDevlInit() call, the disk is mounted
immediately to obtain the configuration values.

2. If INCLUDE_SHOW_ROUTINES is defined in the VxWorks configuration; see
8. Configuration.

205

4.2.9 File I/O

VxWorks 5.3.1
Programmer’s Guide

When a disk is mounted, the boot sector, FAT, and directory data are read from the
disk. The volume descriptor, DOS_VOL_DESC, is updated to reflect the
configuration of the newly mounted disk.

Automatic mounting occurs on the first file access following dosFsVolUnmount()
or aready-change operation (see 4.2.17 Changing Disks, p.211), or periodically if the
disk is defined during the dosFsDevInit() call with the option
DOS_OPT_CHANGENOWARN set. Automatic mounting does not occur when a
disk is opened in raw mode; see 4.2.10 Opening the Whole Device (Raw Mode), p. 206.

Files on a dosFs file system device are created, deleted, written, and read using the
standard VxWorks 1/0 routines: creat(), remove(), write(), and read(). See
3.3 Basic 1/0, p.112 for more information.

4.2.10 Opening the Whole Device (Raw Mode)

It is possible to open an entire dosFs volume. This is done by specifying only the
device name during the open() or creat() call. A file descriptor is returned, as
when a regular file is opened; however, operations on that file descriptor affect the
entire device. Opening the entire volume in this manner is called raw mode.

The most common reason for opening the entire device is to obtain a file descriptor
for an ioctl() function that does not pertain to an individual file. An example is the
FIONFREE function, which returns the number of available bytes on the volume.
However, for many of these functions, the file descriptor can be any open file
descriptor to the volume, even one for a specific file.

When a disk is initialized with MS-DOS data structures (boot sector, empty root
directory, FAT), open the device in raw mode. The ioctl() function FIODISKINIT
performs the initialization.

You can both read and write data on a disk in raw mode. In this mode, the entire
disk data area (that is, the disk portion following the boot sector, root directory, and
FAT) is treated much like a single large file. No directory entry is made to describe
any data written using raw mode.

For low-level 170 to an entire device, including the area used by MS-DOS data
structures, see 4.4 Raw File System: rawFs, p.225 and the reference entry for
rawFsLib.

206

4
Local File Systems

4.2.11 Creating Subdirectories

Subdirectories can be created in any directory at any time, except in the root
directory if it has reached its maximum entry count. Subdirectories can be created
in two ways:

1. Using ioctl() with the FIOMKDIR function: The name of the directory to be
created is passed as a parameter to ioctl(). The file descriptor used for the
ioctl() call is acquired either through opening the entire volume (raw mode),
a regular file, or another directory on the volume.

2. Using open(): To create a directory, the O_CREAT option must be set in the flags
parameter to open, and the FSTAT_DIR option must be set in the mode
parameter. The open() call returns a file descriptor that describes the new
directory. Use this file descriptor for reading only and close it when it is no
longer needed.

When creating a directory using either method, the new directory name must be
specified. This name can be either a full path name or a path name relative to the
current working directory.

4.2.12 Removing Subdirectories

A directory that is to be deleted must be empty (except for the “.” and “..” entries).
The root directory can never be deleted. There are two methods for removing
directories:

1. Using ioctl() call with the FIORMDIR function, specifying the name of the
directory. Again, the file descriptor used can refer to any file or directory on the
volume, or to the entire volume itself.

2. Using the remove() function, specifying the name of the directory.

4.2.13 Directory Entries

Each dosFs directory contains a set of entries describing its files and immediate
subdirectories. Each entry contains the following information about a file or
subdirectory:

file name an 8-byte string (padded with spaces, if necessary) specifying the
base name of the file. (Names can be up to 40 characters; for details
see 4.2.18 Long Name Support, p.214.)

207

VxWorks 5.3.1
Programmer’s Guide

file extension a 3-byte string (space-padded) specifying an optional extension to
the file or subdirectory name. (If case-sensitive file names not
restricted to the 8.3 convention are selected, the extension concept
is not applicable.)

file attribute a one-byte field specifying file characteristics; see 4.2.15 File
Attributes, p.208.

time the encoded creation or modification time for the file.
date the encoded creation or modification date for the file.

cluster number the number of the starting cluster within the file. Subsequent
clusters are found by searching the FAT.

file size the size of the file, in bytes. This field is always 0 for entries
describing subdirectories.

4.2.14 Reading Directory Entries

Directories on dosFs volumes can be searched using the opendir(), readdir(),
rewinddir(), and closedir() routines. These calls can be used to determine the
names of files and subdirectories.

To obtain more detailed information about a specific file, use the fstat() or stat()
function. Along with standard file information, the structure used by these
routines also returns the file-attribute byte from a directory entry.

For more information, see the manual entry for dirLib.

4.2.15 File Attributes

The file-attribute byte in a dosFs directory entry consists of a set of flag bits, each
indicating a particular file characteristic. The characteristics described by the file-
attribute byte are shown in Table 4-4.

DOS_ATTR_RDONLY is checked when a file is opened for O_WRONLY or
O_RDWR. If the flag is set, open() returns ERROR and sets errno to
S_dosFsLib_READ_ONLY.

208

Table 4-4

4
Local File Systems

Flags in the File-Attribute Byte

VxWorks Flag Name Hex value Description
DOS_ATTR_RDONLY 0x01 read-only file
DOS_ATTR_HIDDEN 0x02 hidden file
DOS_ATTR_SYSTEM 0x04 system file
DOS_ATTR_VOL_LABEL 0x08 volume label
DOS_ATTR_DIRECTORY 0x10 subdirectory
DOS_ATTR_ARCHIVE 0x20 file is subject to archiving

NOTE: The MS-DOS hidden file and system file flags, DOS_ATTR_HIDDEN and
DOS_ATTR_SYSTEM, are ignored by dosFsLib. If present, they are kept intact, but
they produce no special handling (for example, entries with these flags are
reported when searching directories).

The volume label flag, DOS_ATTR_VOL_LABEL, indicates that a directory entry
contains the dosFs volume label for the disk. A label is not required. If used, there
can be only one volume label entry per volume, in the root directory. The volume
label entry is not reported when reading the contents of a directory (using
readdir()). It can only be determined using the ioctl() function FIOLABELGET. The
volume label can be set (or reset) to any string of 11 or fewer characters, using the
ioctl() function FIOLABELSET. Any file descriptor open to the volume can be used
during these ioctl() calls.

The directory flag, DOS_ATTR_DIRECTORY, indicates that this entry is not a
regular file, but a subdirectory.

The archive flag, DOS_ATTR_ARCHIVE, is set when a file is created or modified.
This flag is intended for use by other programs that search a volume for modified
files and selectively archive them. Such a program must clear the archive flag since
VxWorks does not.

All the flags in the attribute byte, except the directory and volume label flags, can
be set or cleared using the ioctl() function FIOATTRIBSET. This function is called
after the opening of the specific file with the attributes to be changed. The attribute-
byte value specified in the FIOATTRIBSET call is copied directly; to preserve
existing flag settings, determine the current attributes using stat() or fstat(), then
change them using bitwise and and or operations.

209

VxWorks 5.3.1
Programmer’s Guide

Example 4-1 Setting DosFs File Attributes

This example makes a dosFs file read-only, and leaves other attributes intact.

#include "vxWorks.h"
#include "ioLib.h"
#include "dosFsLib.h"
#include "sys/stat.h"
#include "fcntl.h"

STATUS changeAttributes (void)

{
int fd;
struct stat statStruct;

[* open file */

if (fd = open (“file", O_RDONLY, 0)) == ERROR)
return (ERROR);

[* get directory entry data */

if (fstat (fd, &statStruct) == ERROR)
return (ERROR);

[* set read-only flag on file */

if (ioctl (fd, FIOATTRIBSET, (statStruct.st_attrib | DOS_ATTR_RDONLY))
== ERROR)
return (ERROR);

[* close file */

close (fd);

4.2.16 File Date and Time

Directory entries contain a time and date for each file or directory. This time is set
when the file is created, and it is updated when a file that was modified is closed.
Entries describing subdirectories are not updated—they always contain the
creation date and time for the subdirectory.

The dosFsLib library maintains the date and time in an internal structure. While
there is currently no mechanism for automatically advancing the date or time, two
different methods for setting the date and time are provided.

The first method involves using two routines, dosFsDateSet() and
dosFsTimeSet(). The following examples illustrate their use:

dosFsDateSet (1990, 12, 25); [* set date to Dec-25-1990 */
dosFsTimeSet (14, 30, 22); [* set time to 14:30:22 */

These routines must be called periodically to update the time and date values.

210

4
Local File Systems

The second method requires a user-supplied hook routine. If a time and date hook
routine is installed using dosFsDateTimelnstall(), that routine is called whenever
dosFsLib requires the current date and time. You can use this to take advantage of
hardware time-of-day clocks that can be read to obtain the current time. It can also
be used with other applications that maintain actual time and date.

Define the date/time hook routine as follows (the name dateTimeHook is an
example; the actual routine name can be anything):

void dateTimeHook

(

DOS_DATE_TIME * pDateTime /* ptr to dosFs date & time struct */

)
On entry to the hook routine, the DOS_DATE_TIME structure contains the last time
and date set in dosFsLib. Next, the hook routine fills the structure with the correct
values for the current time and date. Unchanged fields in the structure retain their
previous values.

The MS-DOS specification provides only for 2-second granularity in file time-
stamps. If the number of seconds in the time specified during dosFsTimeSet() or
the date/time hook routine is odd, it is rounded down to the next even number.

The date and time used by dosFsLib is initially Jan-01-1980, 00:00:00.

4.2.17 Changing Disks

To increase performance, the dosFs file system keeps in memory copies of
directory entries and the file allocation table (FAT) for each mounted volume.
While this greatly speeds up access to files, it requires that dosFsLib be notified
when removable disks are changed (for example, when floppies are swapped).
Two different notification methods are provided: (1) dosFsVolUnmount() and (2)
the ready-change mechanism. The following sections are not generally applicable
for non-removable media (although dosFsVolUnmount() can be useful in system
shutdown situations).

Unmounting Volumes

The preferred method of announcing a disk change is to call dosFsVolUnmount()
prior to removing the disk. This call flushes all modified data structures to disk if
possible (see Synchronizing Volumes, p.213) and also marks any open file
descriptors as obsolete. During the next 1/0 operation, the disk is remounted. The
ioctl() call can also be used to initiate dosFsVolUnmount(), by specifying the

211

VxWorks 5.3.1
Programmer’s Guide

FIOUNMOUNT function code. Any open file descriptor to the device can be used
in the ioctl() call.

Subsequent attempts to use obsolete file descriptors for 1/0 operations return an
S_dosFsLib_FD_OBSOLETE error. To free such file descriptors, use close(), as usual.
This returns S_dosFsLib_FD_OBSOLETE as well, but it successfully frees the
descriptor. File descriptors acquired when opening the entire volume (raw mode)
are not marked as obsolete during dosFsVolUnmount() and can still be used.

ISRs must not call dosFsVolUnmount() directly, because it is possible for the call
to pend while the device becomes available. The ISR can instead give a semaphore
that prompts a task to unmount the volume. (Note that dosFsReadyChange() can
be called directly from ISRs; see Announcing Disk Changes with Ready-Change,
p.212.)

When dosFsVolUnmount() is called, it attempts to write buffered data out to the
disk. Its use is therefore inappropriate for situations where the disk-change
notification does not occur until a new disk is inserted, because the old buffered
data would be written to the new disk. In this case, use dosFsReadyChange(),
which is described in Announcing Disk Changes with Ready-Change, p.212.

If dosFsVolUnmount() is called after the disk is physically removed, the data-
flushing portion of its operation fails. However, the file descriptors are still marked
as obsolete and the disk is marked as requiring remounting. In this situation,
dosFsVolUnmount() does not return an error. To avoid lost data, explicitly
synchronize the disk before removing it (see Synchronizing Volumes, p.213).

Announcing Disk Changes with Ready-Change

The second method of informing dosFsLib that a disk change is taking place is
with the ready-change mechanism. A change in the disk’s ready-status is
interpreted by dosFsLib as indicating that the disk must be remounted before the
next 1/0 operation.

There are three ways to announce a ready-change:
= By calling dosFsReadyChange() directly.
= By calling ioctl() with the FIODISKCHANGE function.

= By having the device driver set the bd_readyChanged field in the BLK_DEV
structure to TRUE; this has the same effect as notifying dosFsLib directly.

The ready-change mechanism does not provide the ability to flush data structures
to the disk. It merely marks the volume as needing remounting. Thus, buffered

212

4
Local File Systems

data (data written to files, directory entries, or FAT changes) can be lost. This can
be avoided by synchronizing the disk before asserting ready-change (see
Synchronizing Volumes, p.213). The combination of synchronizing and asserting
ready-change provides all the functionality of dosFsVolUnmount(), except for
marking file descriptors as obsolete.

Ready-change can be used in ISRs, because it does not attempt to flush data or
perform other operations that could cause delay.

The block device driver status-check routine (identified by the bd_statusChk field
in the BLK_DEV structure) can be useful for asserting ready-change for devices that
detect a disk change only after the new disk is inserted. This routine is called at the
beginning of each open() or creat() operation, before the file system checks for
ready-change. See 3.9.4 Block Devices, p.171.

Disks with No Change Notification

If it is not possible for dosFsVolUnmount() to be called or a ready-change to be
announced, then each time the disk is changed, the device must be specially
identified when it is initialized for use with the file system. This is done by setting
DOS_OPT_CHANGENOWARN in the dosvc_options field of the
DOS_VOL_CONFIG structure when calling dosFsDevlnit(); see 4.2.4 Volume
Configuration, p.199.

This configuration option results in a significant performance penalty, because the
disk configuration data must be read in regularly from the physical disk (in case it
was removed and a new one inserted). In addition, setting
DOS_OPT_CHANGENOWARN also enables auto-sync mode; see Auto-Sync Mode,
p.214. Note that all that is required for disk change notification is that either the
dosFsVolUnmount() call or ready-change be issued each time the disk is changed.
It is not necessary that it be called from the device driver or an ISR. For example, if
your application provided a user interface through which an operator could enter
acommand resulting in an dosFsVolUnmount() call before removing the disk, that
would be sufficient, and DOS_OPT_CHANGENOWARN does not need to be set.
However, it is important that the operator follow such a procedure strictly.

Synchronizing Volumes
When a disk is synchronized, all modified buffered data is physically written to the

disk, so that the disk is up to date. This includes data written to files, updated
directory information, and the FAT.

213

Auto-Sync Mode

VxWorks 5.3.1
Programmer’s Guide

To avoid loss of data, synchronize a disk before removing it. You may need to
explicitly synchronize a disk, depending on when (or if) dosFsVolUnmount() is
called. If your application does not call this routine, or it is called after the disk is
removed, use ioctl() to explicitly write the data to the device.

When dosFsVolUnmount() is called, an attempt is made to synchronize the device
before unmounting. If the disk is still present and writable at the time of the call,
synchronization takes place, and no further action is required to protect the
integrity of the data written to it before it is dismounted. However, if the
dosFsVolUnmount() call is made after a disk is removed, it is obviously too late to
synchronize, and dosFsVolUnmount() discards the buffered data.

To explicitly synchronize a disk before it is removed, use ioctl() specifying the
FIOSYNC function. (This could be done in response to an operator command.) Do
this if the dosFsVolUnmount() call is made after a disk is removed or if the routine
dosFsVolUnmount() is never called. The file descriptor used during the ioctl() call
is obtained when the whole volume (raw mode) is opened.

dosFsLib provides a modified mode of synchronization called auto-sync. When
this option is enabled, data for modified directories and the FAT are physically
written to these devices as soon as they are logically altered. (Otherwise, such
changes are not necessarily written out until the involved file is closed.)

Auto-sync mode is enabled by setting DOS_OPT_AUTOSYNC in the
dosvc_options field of the DOS_VOL_CONFIG structure when dosFsDevlInit() is
called; see 4.2.4 Volume Configuration, p.199. Auto-sync mode is automatically
enabled if the volume does not have disk change notification (that is, if
DOS_OPT_CHANGENOWARN is set by dosFsDevInit()).

Auto-sync results in a performance penalty, but it provides the highest level of data
security, because it minimizes the period during which directory and FAT data are
not up to date on the disk. Auto-sync is often desirable for applications where data
integrity is threatened by events such as a system crash.

4.2.18 Long Name Support

The dosFs long name support allows the use of case-sensitive file names longer
than MS-DOS’s 8.3 convention. These names can be up to 40 characters long and
can be made up of any ASCII characters. In addition, a dot (.), which in MS-DOS
indicates a file-name extension, has no special significance.

214

4
Local File Systems

Long name support is enabled by setting DOS_OPT_LONGNAMES in the
dosvc_options field of the DOS_VOL_CONFIG structure when calling
dosFsDevlnit().

A WARNING: If you use this feature, the disk is no longer MS-DOS compatible. Use

long name support only for storing data local to VxWorks, on a disk that is
initialized on a VxWorks system using dosFsDevInit() or dosFsMkfs().

4.2.19 Contiguous File Support

Example 4-2

The dosFs file system provides efficient handling of contiguous files. A contiguous
file is made up of a series of consecutive disk sectors. This capability includes both
the allocation of contiguous space to a specified file (or directory) and optimized
access to such a file.

To allocate a contiguous area to a file, first create the file in the normal fashion,
using open() or creat(). Then use the file descriptor returned during the creation
of the file to make the ioctl() call, specifying the FIOCONTIG function. The
parameter to ioctl() with the FIOCONTIG function is the size of the requested
contiguous area, in bytes. The FAT is searched for a suitable section of the disk, and
if found, it is assigned to the file. (If there is no contiguous area on the volume large
enough to satisfy the request, an error is returned.) The file can then be closed, or
it can be used for further 1/0 operations.

Creating a DosFs Contiguous File

This example creates a dosFs file and allocates 0x10000 contiguous bytes to it.

#include "vxWorks.h"
#include "ioLib.h"
#include "fcntl.n"

STATUS fileContigTest (void)

{

int fd;

STATUS status;
/* open file */

if (fd = creat ("file", O_RDWR)) == ERROR)
return (ERROR);

/* get contiguous area */

status = ioctl (fd, FIOCONTIG, 0x10000);
if (status = OK)

215

Example 4-3

VxWorks 5.3.1
Programmer’s Guide

/* do error handling */
printf ("ERROR");
* use file */
[* close file */
;:Iose (fd);

It is also possible to request the largest available contiguous space. Use
CONTIG_MAX for the size of the contiguous area. For example:

status = ioctl (fd, FIOCONTIG, CONTIG_MAX);

Itis important that the file descriptor used for the ioctl() call be the only descriptor
open to the file. Furthermore, because a file can be assigned a different area of the
disk than is originally allocated, perform the ioctl() FIOCONTIG operation before
any data is written to the file.

To deallocate unused reserved bytes, use the POSIX-compatible routine
ftruncate() or the ioctl() function FIOTRUNC.

Subdirectories can also be allocated a contiguous disk area in the same manner. If
the directory is created using the ioctl() function FIOMKDIR, it must be explicitly
opened to obtain a file descriptor to it; if the directory is created using options to
open(), the returned file descriptor from that call can be used. A directory must be

empty (except for the “.” and *..” entries) when it has contiguous space allocated
to it.

When any file is opened, it is checked for contiguity. If a file is recognized as
contiguous, a more efficient technique for locating specific sections of the file is
used, rather than following cluster chains in the FAT, as must be done for
fragmented files. This enhanced handling of contiguous files takes place regardless
of whether the space is explicitly allocated using FIOCONTIG.

To find the maximum contiguous area on a device, use the ioctl() function
FIONCONTIG. This information can also be displayed by dosFsConfigShow() if
INCLUDE_SHOW_ROUTINES is defined in the VxWorks configuration; see

8. Configuration.

Finding the Maximum Contiguous Area on a DosFs Device

In this example, the size (in bytes) of the largest contiguous area is copied to the
integer pointed to by the third parameter to ioctl() (count).
#include "vxWorks.h"

#include “fcntl.h"
#include "ioLib.h"

216

4
Local File Systems

STATUS contigTest (void)

int count;
int fd;

/* open device in raw mode */
if ((fd = open (/DEV1/", O_RDONLY, 0)) == ERROR)
return (ERROR);

/* find max contiguous area */
ioctl (fd, FIONCONTIG, &count);

[* close device and display size of largest contiguous area */

close (fd);
printf ("largest contiguous area = %d\n", count);

4.2.20 1/0 Control Functions Supported by — dosFsLib
The dosFs file system supports the ioctl() functions listed in Table 4-5. These
functions are defined in the header file ioLib.h. For more information, see the
manual entries for dosFsLib and for ioctl() in ioLib.

Table 4-5 1/0O Control Functions Supported by dosFsLib

Function D\(jz:umeal Description

FIOATTRIBSET 35 Set the file-attribute byte in the dosFs directory entry.
FIOCONTIG 36 Allocate contiguous disk space for a file or directory.
FIODISKCHANGE 13 Announce a media change.

FIODISKFORMAT 5 Format the disk (device driver function).
FIODISKINIT 6 Initialize a dosFs file system on a disk volume.
FIOFLUSH 2 Flush the file output buffer.

FIOFSTATGET 38 Get file status information (directory entry data).
FIOGETNAME 18 Get the file name of the fd.

FIOLABELGET 33 Get the volume label.

FIOLABELSET 34 Set the volume label.

FIOMKDIR 31 Create a new directory.

217

VxWorks 5.3.1
Programmer’s Guide

Table 4-5 1/0O Control Functions Supported by ~ dosFsLib (Continued)

Function D\(jz:umeal Description

FIONCONTIG 41 Get the size of the maximum contiguous area on a device.
FIONFREE 30 Get the number of free bytes on the volume.
FIONREAD 1 Get the number of unread bytes in a file.
FIOREADDIR 37 Read the next directory entry.

FIORENAME 10 Rename afile or directory.

FIORMDIR 32 Remove a directory.

FIOSEEK 7 Set the current byte offset in a file.

FIOSYNC 21 Same as FIOFLUSH, but also re-reads buffered file data.
FIOTRUNC 42 Truncate a file to a specified length.

FIOUNMOUNT 39 Unmount a disk volume.

FIOWHERE 8 Return the current byte position in a file.

4.2.21 Booting from a Local dosFs File System Using SCSI

VxWorks can be booted from a local SCSI device. Before you can boot from SCSI,
you must make new boot ROMs that contain the SCSI library. Define the constants
INCLUDE_SCSI and INCLUDE_SCSI_BOOT in config.h and rebuild bootrom.hex

(see the Tornado User’s Guide: Cross-Development).

After burning the SCSI boot ROMs, you can prepare the dosFs file system for use
as a boot device. The simplest way to do this is to partition the SCSI device so that
a dosFs file system starts at block 0. You can then make the new vxWorks image,

place it on your SCSI boot device, and boot the new VxWorks system. These steps
are shown in more detail below.

A WARNING: For use as a boot device, the directory name for the dosFs file system
must begin and end with slashes (as with /sd0/ used in the following example).
This is an exception to the usual naming convention for dosFs file systems.

1. Create the SCSI device using scsiPhysDevCreate() (see SCSI Drivers, p.141),
and initialize the disk with a dosFs file system (see 4.2.2 Initializing the dosFs
File System, p.197). Modify the file src/config/usrScsiConfig.c to reflect your

218

4
Local File Systems

SCSI configuration. The following example creates a SCSI device with a dosFs
file system spanning the full device:
pPhysDev = scsiPhysDevCreate (pSysScsiCtrl, 2, 0, 0, -1, 0, 0, 0);

pBlkDev = scsiBlkDevCreate (pPhysDev, 0, 0);
dosFsDeviInit ("/sd0/", pBlIkDev, 0);

2. Remake VxWorks and copy the new kernel to the drive:

-> copy "unixHost:/usr/wind/target/config/ bspname/vxWorks", \
"/sd0/vxWorks"

3. Reboot the system, and then change the boot parameters. Boot device
parameters for SCSI devices follow this format:

scsi=id,lun

where id is the SCSI ID of the boot device, and lun is its Logical Unit Number
(LUN). To enable use of the network, include the on-board Ethernet device (for
example, In for LANCE) in the other field. The following example boots from
a SCSI device with a SCSI ID of 2 and a LUN of 0.

[VxWorks Boot]: @

boot device : scsi=2,0
processor number : 0

host name : host

file name : /sd0/vxWorks
inet on ethernet (e) 1 147.11.1.222:ffffff00
host inet (h) : 147.11.1.3

user (u) . jane

flags (f) : 0x0

target name (tn) 1222

other 2 n

Attaching to scsi device... done.
Loading /sdO/vxWorks... 378060 + 27484 + 21544
Starting at 0x1000...

3. If you are using the target shell and INCLUDE_NET_SYM_TBL is defined in your
VxWorks configuration, you must also copy the symbol table to the drive, as follows:

-> copy "unixHost:/usr/wind/target/config/ bspname/vxWorks.sym", "/sd0/vxWorks.sym

219

VxWorks 5.3.1
Programmer’s Guide

4.3 RT-11-Compatible File System: rt11Fs

VxWorks provides the file system rt11Fs, which is compatible with the RT-11 file
system. It is provided primarily for compatibility with earlier versions of
VxWorks. Normally, the dosFs file system is the preferred choice, because it offers
such enhancements as optional contiguous file allocation, flexible file naming, and
so on.

A WARNING: The rt11Fs file system is considered obsolescent. In a future release of
VxWorks, rt11Fs may not be supported.

4.3.1 Disk Organization

The rtlIFs file system uses a simple disk organization. Although this simplicity
results in some loss of flexibility, rt11Fs is suitable for many real-time applications.

The rt1lFs file system maintains only contiguous files. A contiguous file consists of
a series of disk sectors that are consecutive. Contiguous files are well-suited to real-
time applications because little time is spent locating specific portions of a file. The
disadvantage of using contiguous files exclusively is that a disk can gradually
become fragmented, reducing the efficiency of the disk space allocation.

The rtl11Fs disk format uses a single directory to describe all files on the disk. The
size of this directory is limited to a fixed number of directory entries. Along with
regular files, unused areas of the disk are also described by special directory
entries. These special entries are used to keep track of individual sections of free
space on the disk.

4.3.2 Initializing the rt11Fs File System

Before any other operations can be performed, the rt11Fs file system library,
rtl1FsLib, must be initialized by calling rt11FsiInit(). This routine takes a single
parameter, the maximum number of rt11Fs file descriptors that can be open at one
time. This count is used to allocate a set of descriptors; a descriptor is used each
time a file or an rt11Fs device is opened.

The rt1lFslnit() routine also makes an entry for the rt11Fs file system in the 170
system driver table (with iosDrvinstall()). This entry specifies entry points for the
rt11Fs file operations and is used for all devices that use the rt11Fs file system. The
driver number assigned to the rtl11Fs file systems is placed in a global variable
rt11FsDrvNum.

220

4
Local File Systems

The rt11Fslnit() routine is normally called by the usrRoot() task after starting the
VxWorks system. To use this initialization, make sure the symbol
INCLUDE_RT11FS is defined in the configuration file configAll.h, and set
NUM_RT11FS_FILES to the desired maximum open file count.

4.3.3 Initializing a Device for Use with rt11Fs

After the rt11Fs file system is initialized, the next step is to create one or more
devices. Devices are created by the device driver’s device creation routine
(xxDevCreate()). The driver routine returns a pointer to a block device descriptor
structure (BLK_DEV). The BLK_DEYV structure describes the physical aspects of the
device and specifies the routines in the device driver that a file system can call. For
more information about block devices, see 3.9.4 Block Devices, p.171.

Immediately after its creation, the block device has neither aname nor afile system
associated with it. To initialize a block device for use with rt11lFs, the already-
created block device must be associated with rt11Fs and must have a name
assigned to it. This is done with rt11FsDevInit(). Its parameters are:

the name to be used to identify the device
— apointer to the BLK_DEV structure

— aboolean value indicating whether the disk uses standard RT-11 skew and
interleave

— the number of entries to be used in the disk directory (in some cases, the actual
number used is greater than the number specified)

— aboolean value indicating whether this disk is subject to being changed
without notification to the file system

For example:

RT_VOL_DESC *pVolDesc;

pVolDesc = rt11FsDevlnit ("DEV1:", pBlkDev, rtFmt, nEntries, changeNoWarn);

The rt11FsDevInit() call assigns the specified name to the device and enters the
device in the 1/0 system device table (with iosDevAdd()). It also allocates and
initializes the file system’s volume descriptor for the device. It returns a pointer to
the volume descriptor to the caller; this pointer is used to identify the volume
during some file system calls.

Note that initializing the device for use with the rt11Fs file system does not format
the disk, nor does itinitialize the rt11Fs disk directory. These are done using ioctl()
with the functions FIODISKFORMAT and FIODISKINIT, respectively.

221

VxWorks 5.3.1
Programmer’s Guide

4.3.4 Mounting Volumes

4.3.5 File I/O

A disk volume is mounted automatically, generally during the first open() or
creat() for a file or directory on the disk. (Certain ioctl() functions also cause the
disk to be mounted.) When a disk is mounted, the directory data is read it.

Automatic mounting reoccurs on the first file access following a ready-change
operation (see 4.3.8 Changing Disks, p.223) or periodically if the disk is defined
during the rt11FsDevinit() call with the changeNoWarn parameter set to TRUE.
Automatic mounting does not occur when a disk is opened in raw mode. For more
information, see 4.3.6 Opening the Whole Device (Raw Mode), p.222.

Files on an rt1lFs file system device are created, deleted, written, and read using
the standard VxWorks 1/0 routines: creat(), remove(), write(), and read(). The
size of an rt11Fs file is determined during its initial open() or creat(). Once closed,
additional space cannot be allocated to the file. For more information, see 3.3 Basic
1/0, p.112.

4.3.6 Opening the Whole Device (Raw Mode)

It is possible to open an entire rt11Fs volume by specifying only the device name
during the open() or creat() call. A file descriptor is returned, as when opening a
regular file; however, operations on that file descriptor affect the entire device.
Opening the entire volume in this manner is called raw mode.

The most common reason for opening the entire device is to obtain a file descriptor
to perform an ioctl() function that does not pertain to an individual file. An
example is the FIOSQUEEZE function, which combines fragmented free space
across the entire volume.

When a disk is initialized with an rt11Fs directory, open the device in raw mode.
The ioctl() function FIODISKINIT performs the initialization.

A disk can be read or written in raw mode. In this case, the entire disk area is
treated much like a single large file. No directory entry is made to describe any
data written using raw mode, and care must be taken to avoid overwriting the
regular rt11Fs directory at the beginning of the disk. This type of I/0 is also
provided by rawFsLib.

222

4
Local File Systems

4.3.7 Reclaiming Fragmented Free Disk Space

As previously mentioned, the contiguous file allocation scheme used by the rt11Fs
file system can gradually result in disk fragmentation. In this situation, the
available free space on the disk is scattered in a number of small chunks. This
reduces the ability of the system to create new files.

To correct this condition, rt11FsLib includes the ioctl() function FIOSQUEEZE.
This routine moves files so that the free space is combined at the end of the disk.
When you call ioctl(') with FIOSQUEEZE, it is critical that there be no open files on
the device. With large disks, this call may require considerable time to execute.

4.3.8 Changing Disks

To increase performance, rt11Fs keeps copies of directory entries for each volume
in memory. While this greatly speeds up access to files, it requires that rt11FsLib
be notified when removable disks are changed (for example, when floppies are
swapped). This notification is provided by the ready-change mechanism.

Announcing Disk Changes with Ready-Change

A change in ready-status is interpreted by rt11FsLib to mean that the disk must be
remounted during the next 1/0 operation. There are three ways to announce a
ready-change:

= By calling rtl1FsReadyChange() directly.
= By calling ioctl() with FIODISKCHANGE.

= By having the device driver set the bd_readyChanged field in the BLK_DEV
structure to TRUE; this has the same effect as notifying rt11FsLib directly.

The ready-change announcement does not cause buffered data to be flushed to the
disk; it merely marks the volume as needing remounting. As a result, data written
to files or directory entry changes can be lost. To avoid this loss of data, close all
files on the volume before changing the disk.

Ready-change can be used in ISRs, because it does not attempt to flush data or
perform other operations that could cause delay.

The block device driver status-check routine (identified by the bd_statusChk field
in the BLK_DEV structure) can be useful for asserting ready-change for devices that
only detect a disk change after the new disk is inserted. This routine is called at the
start of each open() or creat(), before the file system checks for ready-change.

223

VxWorks 5.3.1

Programmer’s Guide

Disks with No Change Notification

Table 4-6

4.3.9 1/0 Control Functions Supported by

If it is not possible for a ready-change to be announced each time the disk is
changed, the device must be specially identified when it is initialized for use with
the file system. This is done by setting the changeNoWarn parameter to TRUE

when calling rt11FsDevlInit().

When this parameter is defined as TRUE, the disk is checked regularly to obtain
the current directory information (in case the disk is removed and a new one
inserted). As a result, this option causes a significant loss in performance.

I/0 Control Functions Supported by rt11FsLib
Function Decimal Description

Value
FIODIRENTRY 9 Get information about specified device directory entries.
FIODISKCHANGE 13 Announce a media change.
FIODISKFORMAT 5 Format the disk.
FIODISKINIT 6 Initialize an rt11Fs file system on a disk volume.
FIOFLUSH 2 Flush the file output buffer.
FIOFSTATGET 38 Get file status information (directory entry data).
FIOGETNAME 18 Get the file name of the fd.
FIONREAD 1 Get the number of unread bytes in a file.
FIOREADDIR 37 Read the next directory entry.
FIORENAME 10 Rename a file.
FIOSEEK 7 Reset the current byte offset in afile.
FIOSQUEEZE 15 Coalesce fragmented free space on an rt11Fs volume.
FIOWHERE 8 Return the current byte position in a file.

rt11FsLib

The rt11Fs file system supports the ioctl() functions shown in Table 4-6. The
functions listed are defined in the header file ioLib.h. For more information, see
the manual entries for rt11FsLib and for ioctl() in ioLib.

224

4
Local File Systems

4.4 Raw File System: rawFs

VxWorks provides a minimal “file system,” rawFs, for use in systems that require
only the most basic disk 170 functions. The rawFs file system, implemented in
rawFsLib, treats the entire disk volume much like a single large file. Although the
dosFs and rt11Fs file systems do provide this ability to varying degrees, the rawFs
file system offers advantages in size and performance if more complex functions
are not required.

4.4.1 Disk Organization

As mentioned previously, rawFs imposes no organization of the data on the disk.

The rawfFs file system maintains no directory information; thus there is no division
of the disk area into specific files, and no file names are used. All open() operations
on rawFs devices specify only the device name; no additional file names are
allowed.

The entire disk area is available to any file descriptor that is open for the device.
All read and write operations to the disk use a byte-offset relative to the start of the
first block on the disk.

4.4.2 Initializing the rawFs File System

Before any other operations can be performed, the rawFs library, rawFsLib, must
be initialized by calling rawFslInit(). This routine takes a single parameter, the
maximum number of rawFs file descriptors that can be open at one time. This
count is used to allocate a set of descriptors; a descriptor is used each time a rawFs
device is opened.

The rawFsInit() routine also makes an entry for the rawFs file system in the 1/0
system driver table (with iosDrvinstall()). This entry specifies the entry points for
rawFs file operations and is for all devices that use the rawFs file system. The
driver number assigned to the rawFs file systems is placed in a global variable
rawFsDrvNum.

The rawFslInit() routine is normally called by the usrRoot() task after starting the
VxWorks system. To use this initialization, define the symbol INCLUDE_RAWFS in
configAll.h, and set NUM_RAWFS_FILES to the desired maximum open file
descriptor count.

225

VxWorks 5.3.1
Programmer’s Guide

4.4.3 Initializing a Device for Use with the rawFs File System

After the rawrFs file system is initialized, the next step is to create one or more
devices. Devices are created by the device driver’s device creation routine
(xxDevCreate()). The driver routine returns a pointer to a block device descriptor
structure (BLK_DEV). The BLK_DEV structure describes the physical aspects of the
device and specifies the routines in the device driver that a file system can call. For
more information on block devices, see 3.9.4 Block Devices, p.171.

Immediately after its creation, the block device has neither aname nor afile system
associated with it. To initialize a block device for use with rawFs, the already-

created block device must be associated with rawFs and a name must be assigned
to it. This is done with the rawFsDevInit() routine. Its parameters are the name to
be used to identify the device and a pointer to the block device descriptor structure

(BLK_DEV):
RAW_VOL_DESC *pVolDesc;
BLK_DEV *pBlkDev;

pVolDesc = rawFsDevinit ("DEV1:", pBlkDev);

The rawFsDevlnit() call assigns the specified name to the device and enters the
device in the 1/0 system device table (with iosDevAdd()). It also allocates and
initializes the file system’s volume descriptor for the device. It returns a pointer to
the volume descriptor to the caller; this pointer is used to identify the volume
during certain file system calls.

Note that initializing the device for use with rawFs does not format the disk. That
is done using an ioctl() call with the FIODISKFORMAT function.

No disk initialization (FIODISKINIT) is required, because there are no file system
structures on the disk. Note, however, that rawFs accepts that ioctl() function code
for compatibility with other file systems; in such cases, it performs no action and
always returns OK.

4.4.4 Mounting Volumes
A disk volume is mounted automatically, generally during the first open() or
creat() operation. (Certain ioctl() functions also cause the disk to be mounted.)

The volume is again mounted automatically on the first disk access following a
ready-change operation (see 4.4.6 Changing Disks, p.227).

226

4.4.5 File I/O

4
Local File Systems

To begin I/0 to a rawFs device, first open the device using the standard open()
function. (The creat() function can be used instead, although nothing is actually
“created.”) Data on the rawFs device is written and read using the standard 1/0
routines write() and read(). For more information, see 3.3 Basic 1/0, p.112.

The character pointer associated with a file descriptor (that is, the byte offset where
reads and writes take place) can be set by using ioctl() with the FIOSEEK function.

Multiple file descriptors can be open simultaneously for a single device. These
must be carefully managed to avoid modifying data that is also being used by
another file descriptor. In most cases, such multiple open descriptors use FIOSEEK
to set their character pointers to separate disk areas.

4.4.6 Changing Disks

The rawFs file system must be notified when removable disks are changed (for
example, when floppies are swapped). Two different notification methods are
provided: (1) rawFsVolUnmount() and (2) the ready-change mechanism.

Unmounting Volumes

The first method of announcing a disk change is to call rawFsVolUnmount() prior
to removing the disk. This call flushes all modified file descriptor buffers if possible
(see Synchronizing Volumes, p.229) and also marks any open file descriptors as
obsolete. The next 1/0 operation remounts the disk. Calling ioctl() with
FIOUNMOUNT is equivalent to using rawFsVolUnmount(). Any open file
descriptor to the device can be used in the ioctl() call.

Attempts to use obsolete file descriptors for further 1/0 operations produce an
S_rawFsLib_FD_OBSOLETE error. To free an obsolete descriptor, use close(), as
usual. This frees the descriptor even though it produces the same error.

ISRs must not call rawFsVolUnmount() directly, because the call can pend while
the device becomes available. The ISR can instead give a semaphore that prompts
a task to unmount the volume. (Note that rawFsReadyChange() can be called
directly from ISRs; see Announcing Disk Changes with Ready-Change, p.228.)

When rawFsVolUnmount() is called, it attempts to write buffered data out to the
disk. Its use is therefore inappropriate for situations where the disk-change
notification does not occur until a new disk is inserted, because the old buffered

227

VxWorks 5.3.1
Programmer’s Guide

data would be written to the new disk. In this case, use rawFsReadyChange(),
which is described in Announcing Disk Changes with Ready-Change, p.228.

If rawFsVolUnmount() is called after the disk is physically removed, the data
flushing portion of its operation fails. However, the file descriptors are still marked
as obsolete, and the disk is marked as requiring remounting. An error is not
returned by rawFsVolUnmount(); to avoid lost data in this situation, explicitly
synchronize the disk before removing it (see Synchronizing Volumes, p.229).

Announcing Disk Changes with Ready-Change

The second method of announcing that a disk change is taking place is with the
ready-change mechanism. A change in the disk’s ready-status is interpreted by
rawFsLib to indicate that the disk must be remounted during the next 170 call.

There are three ways to announce a ready-change:
= By calling rawFsReadyChange() directly.
= By calling ioctl() with FIODISKCHANGE.

= By having the device driver set the bd_readyChanged field in the BLK_DEV
structure to TRUE; this has the same effect as notifying rawFsLib directly.

The ready-change announcement does not cause buffered data to be flushed to the
disk. It merely marks the volume as needing remounting. As a result, data written
to files can be lost. This can be avoided by synchronizing the disk before asserting
ready-change. The combination of synchronizing and asserting ready-change
provides all the functionality of rawFsVolUnmount() except for marking file
descriptors as obsolete.

Ready-change can be used in ISRs, because it does not attempt to flush data or
perform other operations that could cause delay.

The block device driver status-check routine (identified by the bd_statusChk field
in the BLK_DEV structure)is useful for asserting ready-change for devices that only
detect a disk change after the new disk is inserted. This routine is called at the
beginning of each open() or creat(), before the file system checks for ready-
change.

Disks with No Change Notification

If it is not possible for a ready-change to be announced each time the disk is
changed, close all file descriptors for the volume before changing the disk.

228

4
Local File Systems

Synchronizing Volumes

When a disk is synchronized, all buffered data that is modified is written to the
physical device so that the disk is up to date. For the rawFs file system, the only
such data is that contained in open file descriptor buffers.

To avoid loss of data, synchronize a disk before removing it. You may need to
explicitly synchronize a disk, depending on when (or if) the rawFsVolUnmount()
call is issued.

When rawFsVolUnmount() is called, an attempt is made to synchronize the device
before unmounting. If this disk is still present and writable at the time of the call,
synchronization takes place automatically; there is no need to synchronize the disk
explicitly.

However, if the rawFsVolUnmount() call is made after a disk is removed, it is
obviously too late to synchronize, and rawFsVolUnmount() discards the buffered
data. Therefore, make a separate ioctl(') call with the FIOSYNC function before
removing the disk. (For example, this could be done in response to an operator
command.) Any open file descriptor to the device can be used during the ioctl()
call. This call writes all modified file descriptor buffers for the device out to the
disk.

4.4.7 1/0O Control Functions Supported by — rawFsLib

Table 4-7

The rawfFs file system supports the ioctl() functions shown in Table 4-7. The
functions listed are defined in the header file ioLib.h. For more information, see
the manual entries for rawFsLib and for ioctl() in ioLib.

I/0 Control Functions Supported by rawFsLib

Function Decimal Description
Value

FIODISKCHANGE 13 Announce a media change.

FIODISKFORMAT 5 Format the disk (device driver function).

FIODISKINIT 6 Initialize a rawFs file system on a disk volume (not required).
FIOFLUSH 2 Same as FIOSYNC.

FIOGETNAME 18 Get the file name of the fd.

FIONREAD 1 Get the number of unread bytes on the device.

229

VxWorks 5.3.1
Programmer’s Guide

Table 4-7 1/O Control Functions Supported by ~ rawFsLib

Function D\E/!;:Teal Description

FIOSEEK 7 Setthe current byte offset on the device.
FIOSYNC 21 Write out all modified file descriptor buffers.
FIOUNMOUNT 39 Unmount a disk volume.

FIOWHERE 8 Return the current byte position on the device.

4.5 Tape File System: tapeFs

The tapeFs library, tapeFsLib, provides basic services for tape devices that do not
use a standard file or directory structure on tape. The tape volume is treated much
like a raw device where the entire volume is a large file. Any data organization on
this large file is the responsibility of a higher-level layer.

4.5.1 Tape Organization

The tapeFs file system imposes no organization of the data on the tape volume. It
maintains no directory information; there is no division of the tape area into
specific files; and no file names are used. An open() operation on the tapeFs device
specifies only the device name; no additional file names are allowed.

The entire tape area is available to any file descriptor open for the device. All read
and write operations to the tape use a location offset relative to the current location
of the tape head. When afile is configured as a rewind device and first opened, tape
operations begin at the beginning-of-medium (BOM); see Initializing a Device for
Use with the tapeFs File System, p.231. Thereafter, all operations occur relative to
where the tape head is located at that instant of time. No location information, as
such, is maintained by tapeFs.

230

4
Local File Systems

4.5.2 Using the tapeFs File System

Before tapeFs can be used, it must be configured by defining INCLUDE_TAPEFS in
the BSP file config.h. Note that the tape file system must be configured with SCSI-2
enabled. See Configuring SCSI Drivers, p.142 for configuration details.

Once the tape file system has been configured, you must initialize it and then
define a tape device. Once the device is initialized, the physical tape device is

available to the tape file system and normal 1/0 system operations can be

performed.

Initializing the tapeFs File System

The tapeFs library, tapeFsLib, is initialized by calling tapeFslnit(). Each tape file
system can handle multiple tape devices. However, each tape device is allowed
only one file descriptor. Thus you cannot open two files on the same tape device.

The tapeFsInit() routine also makes an entry for the tapeFs file system in the I/0
system driver table (with iosDrvinstall()). This entry specifies function pointers
to carry out tapeFs file operations on devices that use the tapeFs file system. The
driver number assigned to the tapeFs file system is placed in a global variable,
tapeFsDrvNum.

When initializing a tape device, tapeFsiInit() is called automatically if
tapeFsDevInit() is called; thus, the tape file system does not require explicit
initialization.

Initializing a Device for Use with the tapeFs File System

Once the tapeFs file system has been initialized, the next step is to create one or
more devices that can be used with it. This is done using the sequential device
creation routine, scsiSegDevCreate(). The driver routine returns a pointer to a
sequential device descriptor structure, SEQ_DEV. The SEQ_DEV structure
describes the physical aspects of the device and specifies the routines in the device
driver that tapeFs can call. For more information on sequential devices, see the
manual entry for scsiSegDevCreate(), Configuring SCSI Drivers, p.142, 3.9.4 Block
Devices, p.171, and Example 3-6.

Immediately after its creation, the sequential device has neither a name nor a file
system associated with it. To initialize a sequential device for use with tapeFs, call
tapeFsDevInit() to assign a name and declare a file system. Its parameters are the
volume name, for identifying the device; a pointer to SEQ_DEYV, the sequential

231

VxWorks 5.3.1
Programmer’s Guide

device descriptor structure; and a pointer to an initialized tape configuration
structure TAPE_CONFIG. This structure has the following form:

typedef struct /* TAPE_CONFIG tape device config structure */

int blkSize; [* block size; 0 => var. block size */

BOOL rewind; /* TRUE => a rewind device; FALSE => no rewind */
int numFileMarks; /* not used */

int density; /* not used */

} TAPE_CONFIG;

In the preceding definition of TAPE_CONFIG, only two fields, blkSize and rewind,
are currently in use. If rewind is TRUE, then a tape device is rewound to the
beginning-of-medium (BOM) upon closing a file with close(). However, if rewind
is FALSE, then closing a file has no effect on the position of the read/write head on
the tape medium.

For more information on initializing a tapeFs device, see the reference entry for
tapeFsDevInit().

The blkSize field specifies the block size of the physical tape device. Having set the
block size, each read or write operation has a transfer unit of blkSize. Tape devices
can perform fixed or variable block transfers, a distinction also captured in the
blkSize field.

Fixed Block and Variable Block Devices

Example 4-4

A tape file system can be created for fixed block size transfers or variable block size
transfers, depending on the capabilities of the underlying physical device. The
type of data transfer (fixed block or variable block) is usually decided when the
tape device is being created in the file system, that is, before the call to
tapeFsDevInit(). A block size of zero represents variable block size data transfers.

Once the block size has been set for a particular tape device, it is usually not
modified. To modify the block size, use the ioctl() functions FIOBLKSIZESET and
FIOBLKSIZEGET to set and get the block size on the physical device.

Note that for fixed block transfers, the tape file system buffers a block of data. If the
block size of the physical device is changed after a file is opened, the file should
first be closed and then re-opened in order for the new block size to take effect.

Tape Device Configuration

There are many ways to configure a tape device. In this code example, a tape
device is configured with a block size of 512 bytes and the option to rewind the
device at the end of operations.

232

4
Local File Systems

* global variables assigned elsewhere */
SCSI_PHYS_DEV * pScsiPhysDev;
/* local variable declarations */

TAPE_VOL_DESC * pTapeVol;
SEQ_DEV * pSeqDev;
TAPE_CONFIG pTapeConfig;

/* initialization code */

pTapeConfig.blkSize =512;

pTapeConfig.rewind = TRUE;

pSeqDev = scsiSeqDevCreate (pScsiPhysDev);

pTapeVol =tapeFsDevinit ("/tapel”, pSegDev, pTapeConfig);
The tapeFsDevinit() call assigns the specified name to the device and enters the
device in the 170 system device table (with iosDevAdd()). The return value of this
routine is a pointer to a volume descriptor structure that contains volume-specific
configuration and state information.

Mounting Volumes

A tape volume is mounted automatically during the open() operation. There is no
specific mount operation, that is, the mount is implicit in the open() operation.

Modes of Operation

File I/O

The tapeFs tape volumes can be operated in only one of two modes: read-only
(O_RDONLY) or write-only (O_WRONLY). There is no read-write mode. The mode
of operation is defined when the file is opened using open().

To begin 1/0 to a tapeFs device, the device is first opened using open(). Data on
the tapeFs device is written and read using the standard 1/0 routines write() and
read(). For more information, see 3.7.6 Block Devices, p.140.

End-of-file markers can be written using ioctl() with the MTWEOF function. For
more information, see 1/0 Control Functions Supported by tapeFsLib, p.234.

233

Changing Tapes

VxWorks 5.3.1
Programmer’s Guide

The tapeFs file system should be notified when removable media are changed (for
example, when tapes are swapped). The tapeFsVolUnmount() routine controls the
mechanism to unmount a tape volume.

A tape should be unmounted before it is removed. Prior to unmounting a tape
volume, an open file descriptor must be closed. Closing an open file flushes any
buffered data to the tape, thus synchronizing the file system with the data on the
tape. To flush or synchronize data, call ioctl() with the FIOFLUSH or FIOSYNC
functions, prior to closing the file descriptor.

After closing any open file, call tapeFsVolUnmount() before removing the tape.
Once a tape has been unmounted, the next 1/0 operation must remount the tape
using open().

Interrupt handlers must not call tapeFsVolUnmount() directly, because it is
possible for the call to pend while the device becomes available. The interrupt
handler can instead give a semaphore that prompts a task to unmount the volume.

I/O Control Functions Supported by tapeFsLib

Table 4-8

The tapeFs file system supports the ioctl() functions shown in Table 4-8. The
functions listed are defined in the header files ioLib.h, seglo.h, and tapeFsLib.h.
For more information, see the reference entries for tapeFsLib, ioLib, and ioctl().

I/0 Control Functions Supported by ~ tapeFsLib

Function Value Meaning

FIOFLUSH 2 Write out all modified file descriptor buffers.
FIOSYNC 21 Same as FIOFLUSH.

FIOBLKSIZEGET 1001 Get the actual block size of the tape device by issuing a

driver command to it. Check this value with that set in
the SEQ_DEV data structure.

FIOBLKSIZESET 1000 Setthe block size of the tape device on the device and in
the SEQ_DEV data structure.

MTIOCTOP 1005 Perform a UNIX-like MTIO operation to the tape
device. The type of operation and operation count is set
inan MTIO structure passed to the ioctl() routine. The
MTIO operations are defined in Table 4-9.

234

Table 4-9

4
Local File Systems

The MTIOCTOP operation is compatible with the UNIX MTIOCTOP operation. The
argument passed to ioctl() with MTIOCTORP is a pointer to an MTOP structure that
contains the following two fields:

typedef struct mtop
short mt_op; /* operation */
int mt_count; /* number of operations */
}MTOP;

The mt_op field contains the type of MTIOCTOP operation to perform. These
operations are defined in Table 4-9. The mt_count field contains the number of
times the operation defined in mt_op should be performed.

MTIOCTOP Operations

Function Value Meaning

MTWEOF 0 Write an end-of-file record or “file mark.”

MTFSF 1 Forward space over file mark.

MTBSF 2 Backward space over file mark.

MTFSR 3 Forward space over data block.

MTBSR 4 Backward space over data block.

MTREW 5 Rewind the tape device to the beginning-of-medium.

MTOFFL 6 Rewind and put the drive offline.

MTNOP 7 No operation, sets the status in the SEQ_DEYV structure
only.

MTRETEN 8 Re-tension the tape (cartridge tape only).

MTERASE 9 Erase the entire tape.

MTEOM 10 Position tape to end-of-media.

MTNBSF 11 Backward space file to beginning-of-medium.

235

51

5.2

Network

[[g1vqoTo [0o31To) o [N USSP 243
NEtWOrk COMPONENTS ..viiiiiiiieiiie st esiee sttt e s e bt e e e saaeebes 243
521 ETREINEL oo 244
5.2.2 Serial Line Interface Protocol (SLIP and CSLIP)cccccevvvniee. 244
5.2.3 Point-to-Point Protocol (PPP)cccccciiiiiieiesece e 246
5.24 Shared-Memory NetWOrKcccccceiviiiiiieie e 246
5.25 TCP/IP Internet Protocols and Addressescccoevvivevevienieennnn, 246
PrOtOCOIS ..o s 246
INtErNEt AQAIESSES ...ocvveeeiee e 247
Packet ROULINGccocveiiiicce et 249
NetWOrk Byte OFrderoccvociiiiiece e 250
5.2.6 SOCKELS ...oooiiiiieiicc e 251
Stream SOCKELS (TCP) ..viiiciccceeee e 253
Datagram SOCKELS (UDP)ccocceiiieieee e 259
5.2.7 The Zbuf Socket INterface ..o 264
Zbuf Calls to Send Existing Data Bufferscccoceveviiiciinenns 264
Manipulating the Zbuf Data Structurecccocveveieiiiccenn 265
ZbUf SOCKEL CallS ..o 273
5.2.8 Remote Procedure Calls ..o 278
529 RemMOLE File ACCESS ..cvoivieiiiieie sttt 278

237

53

54

VxWorks 5.3.1
Programmer’s Guide

5.2.10 Remote Command EXECUtiONccccooiiiiiiinininiie e 279
5.2.11 Simple Network Management Protocol (WindNet SNMPv1/v2c
OPLION) i b 279
Configuring the NEIWOIK ..eoiiiiiece e 280
5.3.1 Associating Internet Addresses with Network Interfaces 280
5.3.2 Associating Internet Addresses with Host Names 281
5.3.3 Transparent Remote File ACCESScccovieiriiiininire e 282
Transparent Remote File Access with RSH and FTP 283
Transparent Remote File Access with NFS ... 286
Allowing Remote Access to VxWorks Files through NFS 288
5.34 Remote File Transfer Using TFTP ..o 291
5.3.5 Remote Login from VxWorks to the Host: rlogin()c..c........ 292
5.3.6 Adding Gateways to a Networkc.cccocvivivieiieiinnic e 292
Adding a Route on WINAOWScccceviiiiieiie e 293
Adding a Route on UNIX ... 293
Adding a Route on VXWOIKScccooiiviiiiiieie e 294
5.3.7 Testing Network Connectionscccccecvviviieviesiese e 295
5.3.8 Broadcast AAAIESSESccccocirirerienieiieieieesesie et 296
5.3.9 USING SUBNELScooiiiiicce e 297
5.3.10 Configuration of Mbufsccccccooiiiiii i 298
Shared-Memory NEIWOIKS ..oicviiiiiiieiiiesie st sae e 301
5.4.1 The Backplane Shared-Memory Poolccccocviiiiniiincicne, 302
Backplane Processor NUMDEIS ... 302
The Shared-Memory Network Master: Processor 0c....... 303
The Shared-Memory ANCNOK ... 303
The Shared-Memory Heartbeatc..ccooeiiviiiiii e 304
Shared Memory LOCAtioNcccccvvveiiiicie e 305
Shared MemOrY SIZEc.coooieiicieecee e 306
On-Board and Off-Board Optionsccccveevenenenenene e 306
Test-and-Set to Shared MEMOIYcccccvveviiieiiccce e 307
5.4.2 Interprocessor INTErrUPLScccoveriiiiiiiiee e 307

238

5.5

5.6

5.7

5

Network

5.4.3 Sequential ADAreSSingcccoviriiininineie e 309
544 Configuring the HOSL ..o 311
545 Example Configurationccciiiiiiininene e 311
54.6 TroubleshOOtingccccceiiiieiiiicc e 314
PIOXY ARP oottt sttt sttt e nra b 316
551 ARP INtrOAUCTION ...oouiiiiiiiiiiiiiiiirne e 316
55.2 ProxXy ARP OVEIVIEWcccccveiiiiiiie et 318
5.5.3 Routing Issues on the ProXy SEIVErccccccveveiieiesiesiesieseeies 319
55.4 Proxy ARP ProtoCo!lcccccveviiiiiiiicc e 320
ARP Requests for Proxy CHENtS ... 320
ARP Requests from Proxy Clients for Non-proxy Clients 321
ARP Replies from the Main Network ..o 321
55,5 Broadcast Datagramsccccceiieiieiieeiiesieesie e 321
556 Multi-Homed Proxy ClHentscccooiiiiininine e 323
ROUTING . 323
BrOAACASTS ...ovieiiiieie e et 324
55.7 SiNgle-TIer SUPPOITcoviiiiiiiiiieire e 324
558 SUDNELS oo 325
559 ConfigQUrationccooiiiiiiiiiiiiie e 326
Sequential and Default ADAressingccccoceveveneiencicieeecee, 327

VxWorks Images for Proxy ARP with Shared Memory and IP
ROUTING .o 329
Setting Up Boot Parameters and Bootingccccooceveieininnennne. 329
Creating Network Connectionsc.cccvieienene i 330
Debugging the Networkcccocoveiiiii i 330
Serial Line Internet Protocol (SLIP and CSLIP) .ooivvieiin e 331
5.6.1 SLIP Configurationccccocveviiiiiie i 331
5.6.2 Booting VxWorks and Accessing Files Using SLIP or CSLIP 332
P0iNt-t0-Point ProtoCol (PPP) oviiiiiiiie ettt 334
571 INrOAUCTION ..ooeiiiiiiiiiiiee e 334

239

5.8

5.9

VxWorks 5.3.1
Programmer’s Guide

PPP for Tornado FEATUIEScccovviiiiiiiiiicre e 334
The Point-to-Point Protocol Compared to SLIP ... 335
5.7.2 ConfIgurationcccccviieiiiieii e 336
Selecting PPP Options by Using Configuration Constants in
CONFIGQAILN o 337
Selecting PPP Options by Using an Options Structure 339
Setting PPP Options by Using an Options Filec.ccoccoeenee. 339
5.7.3 The Point-to-Point Protocol (PPP) ..o 340
ENCAPSUIATION ..o 341
Link Control Protocol (LCP)cccocveiicicece e 341
Internet Protocol Control Protocol (IPCP)ccccevveviieeiciees 342
Password Authentication Protocol (PAP) ..., 342
Challenge-Handshake Authentication Protocol (CHAP) 342
574 USING PPP ..o 343
Initializing @ PPP LiNKccooiviiieec e 343
Deleting @ PPP LiNKc.cooiiiiiiiec e 344
Booting VXWOrks USiNg PPPccocooi i 345
PPP OPLIONS ..ottt s 347
PPP AUhentiCation ... 347
Connect and Disconnect HOOKS ... 355
575 PPP With TOrnadocccccooiiiiiiiii s 357
PPP Link as an Additional Network Interfaceccccccoeneenes 357
PPP Link as a Network Back End for the Target Server on the Host
357
57.6 Troubleshooting PPP ... 358
Link Establishment ... 359
AULheNntication ... 359
577 PPP Reference LiStccociiiiiiiiiiee s 360
Requests for Comments (RFC) ..o 360
PPP NEWSGIOUP ...viiiiiiiiiiit ettt 360
Network Initialization 0N Startup .eoocvevieiies e 361
BOOTP (BOOtStrap ProtOCOI) ...vieveiiiiiiiiesies e sie st ssie e sive e s ssee s 363
59.1 The BOOTP SEIVEIocciiiiiiiiiieie ettt 363

240

5

Network

592 The BOOTP Databaseccccoiiriiriiniinineseseseesre e 364
Registering the VXWOrks Targetcccoeveviveevicie e 365
Obtaining the Target Ethernet Addresscccccooevivvieviiieneenenn, 365

5.9.3 The VXWorks Boot Parameterscccoovvvninnensieneeneeneene 366
59.4 Booting a VxWorks Target with BOOTP/TFTPccccccvveivninnen. 366
BOOting EXAMPIEoooiiiiie 366
Troubleshooting ... 368

5.10 Using TFTP, BOOTP, Sequential Addressing, Proxy ARP ...ccocceviiivieniennn, 369

List of Tables

Table 5-1 Internet Address RaNQEScccooveveeneieneieneie e 249
Table 5-2 Network Address Conversion Macroscccoceeereennns 250
Table 5-3 SOCKEL ROULINES ..o 252
Table 5-4 170 Control Functions Supported by Sockets 253
Table 5-5 TCP Analogy to Telephone Communication 253
Table 5-6 Zbuf Creation and Deletion ROULINEScc.ccoeveviecnen. 266
Table 5-7 Zbuf Data Copying ROULINEScccccoovviernieniinecee 267
Table 5-8 ZbUF OPEratioNSccoceiiieriieiee e 267
Table 5-9 Zbuf Segment ROULINESccooeviincienee e 269
Table 5-10 Zbuf Socket Library ROULINEScoccoeveiieiniiinicee 273
Table 5-11 Network Procedures SUMMAIYcccooverienneneennennns 299
Table 5-12 Backplane INterrupt TYPES ..c.ocvvvvvrririvireinceneeseeiens 308
Table 5-13 Network Address AsSIGNMENtSccccoevvernenecnnennns 312
Table 5-14 Parameters in config.h ... 313
Table 5-15 PPP Configuration Constantsccccccveeneinennennnenn, 338
Table 5-16 PPP Configuration Options in configAllLh 338
Table 5-17 PPP Configuration Options ... 348
Table 5-18 Secrets File FOrmatcccocvvovviivenienie e 352
Table 5-19 Specifying Boot Parametersccccoceveeveneienenieiiereaeennns 367

241

VxWorks 5.3.1

Programmer’s Guide

List of Figures

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-11
Figure 5-12
Figure 5-13
Figure 5-14
Figure 5-15
Figure 5-16
Figure 5-17
Figure 5-18
Figure 5-19

Figure 5-20

Figure 5-21
Figure 5-22
Figure 5-23
Figure 5-24
Figure 5-25

List of Examples

Example 5-1
Example 5-2
Example 5-3
Example 5-4
Example 5-5

242

VxWorks Network Componentsccccooevvennenneninen, 245
Internet Address CIasSesScccveireieieienenineisenesee e, 248
INtErNet ROULING ...cooveviiiiieiee e 249
Zbuf Addressing Relative to First Segment (NULL) 265
Zbuf Addressing Relative to Second Segment 266
FTP BOOt EXaMPIE ..ot 283
Routing EXample ... 294
SUDNELEING .o 297
Shared-Memory Network ..., 301
Shared-Memory Heartbeat ..., 305
Sequential AAAressing ..., 309
Example Shared-Memory Networkcccccoeovnivnnnenn. 312
ARP EXAMPIE ..o 317
Subnets and ARPccoiiii 318
Proxy ARP EXamMPIecoccviiiriiiiincceeis 319
Proxy Server EXample ... 320
Broadcast Datagram Forwardingccccecveeiennennnnenn. 322
Routing EXample ... 323

Single-Tier Example Using Proxy ARP with Two Branches
325
Multi-Tier Configuration that CANNOT Be Used with Proxy

ARP e 326
Another Single-Tier Example Using Proxy ARP 327
Multi-Tier Example Using Proxy ARP and IP Routing . 328
SLIP Configuration Examplecccccoiniiniiiiniee, 333
Format of Standard PPP Frame Structurec........... 341
PPP Configuration Examplecccoooiiniinniniin 346
Stream SOCKEtS (TCP) ... 254
Datagram Sockets (UDP)cccceivvivivnnniene e 260
Zbuf Display ROULINEcccceiveieiercese e 272
The TCP Example Server Using Zbufscc.cccccvvenennns 274
Using Connect and Disconnect HOOKSccccccceeveennee, 355

5
Network

5.1 Introduction

The VxWorks network is the link that connects VxWorks systems with other
VxWorks systems and many other kinds of hosts. The VxWorks network is fully
compatible with the 4.3 BSD Tahoe UNIX network facilities. VxWorks is also
compatible with the Network File System (NFS) designed by Sun Microsystems.

This link provides a seamless environment between development hosts and
VxXWorks target systems. Remote file access allows VxWorks tasks to access files on
other systems across the network. Remote procedure calls allow a task on one
machine to invoke procedures that actually run on another machine. If you are
using the target shell, you can use rlogin and telnet to access the shell from your
host development system; see 9. Target Shell for information.

This chapter gives an overview of the components comprising the VxWorks
network, and of the procedures necessary to configure the network.

A NOTE: This chapter addresses VxWorks networking facilities in a general way, but
it also describes some of the specific configuration information you must know if
you are using a UNIX development host. We can provide this information because
UNIX has a standard interface to a standard set of networking facilities. However,
Windows systems do not: the availability of networking facilities on a Windows
host depends on the version of Windows and on the networking software package
you are using. Thus, if you are using a Windows development host, consult your
Windows and networking software documentation for complete networking
information.

5.2 Network Components
The hierarchy of VxWorks network components is shown in Figure 5-1. At the

lowest level, VxWorks typically uses Ethernet as the basic transmission medium.
VxWorks can also use serial lines for long-distance connections or shared memory

243

VxWorks 5.3.1
Programmer’s Guide

on a common backplane in more closely coupled environments. On top of the
transmission media, VxWorks uses the Internet protocols TCP/IP and UDP/IP to
transport data between processes running under either VxWorks or the host
development system.

Using Internet protocols, VxWorks makes several types of network facilities
available:

= Sockets allow communications between tasks, running either under VxWorks
or the host development system.

= Remote Procedure Calls (RPC) allow a task on one machine to invoke
procedures that run on other machines. Both the calling task and called
procedure can run under either VxWorks or the remote development system.

= Remote File Access allows VxWorks tasks to access host files remotely, with the
Network File System (NFS), remote shell (RSH), Internet File Transfer Protocol
(FTP), or Trivial File Transfer Protocol (TFTP).

= File Export allows remote systems that have NFS clients to use files maintained
on VxWorks dosFs file systems.

= Remote Command Execution allows VxWorks tasks to invoke commands on a
host development system over the network.

5.2.1 Ethernet

Ethernet is one medium among many over which the VxWorks network operates.
Ethernet is a local area network specification that is supported by numerous
vendors. It is ideal for most VxWorks applications, but there is nothing inherently
tied to Ethernet in either the VxWorks or host network systems.

5.2.2 Serial Line Interface Protocol (SLIP and CSLIP)

The VxWorks network can communicate with the host operating system over
serial connections using the Serial Line Interface Protocol (SLIP), or using a version
of SLIP with compressed headers (CSLIP). Using SLIP or CSLIP as a network
interface driver is a straightforward way to use TCP/IP software with point-to-
point configurations such as long-distance telephone lines or RS-232 serial
connections between machines.

244

5

SNMP
vii2

Network
Figure 5-1 VxWorks Network Components
Remote Login Remote File Access
Remote
Command
Execution
netDrv
Source X
rlogin | telnet Debugger NFS RSH FTP | |TFTP VF\J/:Q?OOC\A(;T
T T I I I T
RPC
zbuf
Sockets
TCP UDP
IP + ICMP
Custom
Ethernet Backplane Interface
PPP SLIP/CSLIP

245

VxWorks 5.3.1
Programmer’s Guide

5.2.3 Point-to-Point Protocol (PPP)

The Point-to-Point Protocol (PPP) is one method by which VxWorks can
communicate with other operating systems over a serial line connection. PPP
supports Internet Protocol (IP) layer networking software over point-to-point
configurations, such as long-distance telephone lines or RS-232 serial connections
between machines. If either end of a PPP connection has other network interfaces
(such as Ethernet) and is able to forward packets to other machines, a PPP
connection can serve as a gateway between networks.

The basic functionality provided by PPP is similar to that of the Serial Line Internet
Protocol (SLIP), with the advantage that PPP is extensible and offers various
configurable options.

5.2.4 Shared-Memory Network

The VxWorks network can also be used for communication among multiple
processors on a common backplane. In this case, data is passed through shared
memory. This is implemented in the form of a standard network driver so that all
the higher levels of network components are fully functional over this shared-
memory “network.” Thus, all the high-level network facilities provided over
Ethernet are also available over the shared-memory network.

5.2.5 TCP/IP Internet Protocols and Addresses

Protocols

On top of the raw Ethernet and backplane transmission mechanisms, VxWorks
uses the Internet protocol suite (often referred to as TCP/IP) to effect
communication across the network. Three main protocols are used:

= Internet Protocol (IP) is the base network protocol of the Internet protocol
family. With IP, each host (computer) in the network has a unique 4-byte
Internet address (described in Internet Addresses, p.247). IP accepts packets
addressed to a particular host and tries to deliver them. If multiple networks
are connected by gateways, IP forwards a packet from gateway to gateway
until the packet reaches a network where it can be delivered directly. IP also
breaks up and reassembles packets to fit the packet size of the physical
network. However, IP makes no guarantees that packets are delivered to the

246

5
Network

destination correctly. Although it is possible to access IP directly, most
applications use one of the higher-level protocols such as UDP or TCP.

» User Datagram Protocol (UDP) provides a simple datagram-based process-to-
process communication mechanism. UDP extends the message address to
include a port address in addition to the host Internet address, where a port
address identifies one of several distinct destinations within a single host.
Thus UDP accepts messages addressed to a particular port on a particular
host, and tries to deliver them, using IP to transport the messages between the
hosts. Like IP, UDP makes no guarantees that messages are delivered correctly
or even delivered at all.

= Transmission Control Protocol (TCP) provides reliable, flow-controlled, two-
way, process-to-process transmission of data. TCP is a connection-based
communication mechanism. This means that before data can be exchanged
over TCP, the two communicating processes must first establish a connection
through a distinct connection phase. Data is then sent and received as a byte
stream at both ends. Like UDP, TCP extends the connection address to include
a port address in addition to the host Internet address. That is, a connection is
established between a particular port in one host and a particular port in
another host. TCP guarantees that the delivery of data is correct, in the proper
order, and without duplication.

The VxWorks network also fully supports the associated Internet Control Message
Protocol (ICMP) and the Ethernet Address Resolution Protocol (ARP), as
implemented in UNIX BSD 4.3.

Internet Addresses

Each host in an Internet network has a unique Internet address and an associated
address mask. An Internet address is 32 bits long, and begins with a Internet
address class, followed by a network identifier and host identifier. The address
mask is set to a default value according to class if subnets are not used. For more
information, see 5.3.9 Using Subnets, p.297.

247

Figure 5-2

VxWorks 5.3.1
Programmer’s Guide

There are three classes of Internet addresses to accommodate different network
configurations:

Class A addresses support a small number of networks, each with a large
number of hosts.

Class B addresses support a moderate number of networks, each with a
moderate number of hosts.

Class C addresses support a large number of networks, each with a small
number of hosts.

The three classes are distinguished by the high-order bits of an Internet address as
shown in Figure 5-2.

Internet Address Classes

CLASS ADDRESS EXAMPLE
A |0network: 7 bitg host: 24 bits | 90123
B [1o] network: 14 bits host: 16 bits | 128.0.1.2
c [1ao] network: 21 bits host: 8 bits | 192.0.0.1

By convention, Internet addresses are usually represented as a character string
with a dot (.) notation. Dot notation lists the 32-bit number as a string of four 8-
bit values separated by dots. Internally, the Internet address is often kept as a
simple 32-bit value (for example, as an int, long, u_long, or struct in_addr). For
example, the Internet address 0x5a010203 is 90.1.2.3 in standard dot notation. Each
Internet address class has a unique address range determined by the high-order
bits and the default address mask (used for masking out the bits used for the
network portion of the address) as shown in Table 5-1.

VxWorks includes routines for manipulating Internet addresses. For instance,
there are routines for converting between dot notation and integer notation,
routines for extracting network and host portions of an address, and routines for
creating a new address from a network and host number. See the reference entry
for inetLib.

248

5

Network
Table 5-1 Internet Address Ranges
Class High Order Bits Default Address Mask Address Range
A 0 0xff000000 0.0.0.0 - 126.255.255.255
Reserved 127.0.0.0 - 127.255.255.255
B 10 0xffff0000 128.0.0.0 - 191.255.255.255
C 110 Oxffffff00 192.0.0.0 - 223.255.255.255

Packet Routing

The IP layer software handles packet routing. For each device connected to the
network, internal routing tables contain information about possible destination
addresses. These routing tables contain two types of entries: host-specific route
entries and network-specific route entries. Host-specific route entries contain the
host destination address and the address of the gateway to use for packets
destined for this host. Network-specific route entries contain a network
destination address and the Internet address of the gateway to use for packets
destined for this network. Figure 5-3 shows an example.

Figure 5-3 Internet Routing

Internet Routing Table

Destination Gateway

host Host-Specific Entry | 161.27.0.51 | 150.12.0.2
I Network-Specific Entry 161.27.0.0 | 150.12.0.2
150.12.0.1
I \ I 150.12.0.0
\150.12.0.2
\‘ |
host gateway

%
I

;|
161.27.0.51 Jﬁl.Z?.O.SO
| |

161.27.0.0

249

VxWorks 5.3.1
Programmer’s Guide

The host-specific route entries have precedence over network-specific route
entries. The IP layer software first compares the destination address against any
host-specific route entries in the table. If there is no match, the IP layer software
searches for an appropriate network-specific routing table entry. The appropriate
address mask is applied to the destination address to obtain the network identifier.
This network identifier is then compared against the network-specific entries in
the routing table.

The VxWorks routing table is edited explicitly using routeAdd() and
routeDelete():

/* To send to network 161.27.0.0 use 150.12.0.2 */
routeAdd ("161.27.0.0", "150.12.0.2");

* Delete route to node 161.27.0.51 using gateway 150.12.0.2 */
routeDelete ("161.27.0.51", "150.12.0.2");

Another routing function, routeNetAdd(), is equivalent to routeAdd() except that
it always treats the destination address as a hetwork.

Network Byte Order

Table 5-2

Different CPU architectures can be present on a single network. The numeric
representation schemes of these architectures can differ: some use big-endian
numbers, and some use little-endian numbers. To permit exchanging numeric data
over a network, some overall convention is necessary. In VxWorks, network byte
order is the convention that governs exchange of numeric data related to the
network itself, such as socket addresses or shared-semaphore IDs. Numbers in
network byte order are big-endian.

The routines in Table 5-2 convert longs and shorts between host- and network byte
order. To minimize the overhead in calling them, macro implementations (which
have no effect on architectures where no conversion is needed) are also available,
in h/netinet/in.h.

Network Address Conversion Macros

Macro Description

htonl Convert a long from host to network byte ordering.
htons Convert a short from host to network byte ordering.
ntohl Convert a long from network to host byte ordering.
ntohs Convert a short from network to host byte ordering.

250

5.2.6 Sockets

5
Network

This example increments pBuf four times on little-endian architectures:
pBufHostLong = ntohl (*pBuf++); I* UNSAFE */

To avoid macro-expansion side effects, do not apply these macros directly to an
expression. Instead, increment separately from the macro call. The following
increments pBuf only once, whether the architecture is big- or little-endian:

pBuf++;
pBufHostLong = ntohl (*pBuf);

In VxWorks, the direct interface to the Internet protocol suite is through sockets. A
socket is an end-point for communications that is bound to a UDP or TCP port
within the node. There are two types of sockets:

A process can create a datagram socket (which uses UDP) and bind it to a
particular port number. Other processes, on any host in the network, can then
send messages to that socket by specifying the host Internet address and the
port number.

Similarly, a process can create a stream socket (which uses TCP) and bind itto a
particular port number. Another process, on any host in the network, can then
create another stream socket and request that it be connected to the first socket
by specifying its host Internet address and port number. After the two TCP
sockets are connected, there is a virtual circuit set up between them, allowing
reliable socket-to-socket communications.

One of the biggest advantages of socket communication is that it is a
“homogeneous” mechanism: socket communications among processes are exactly
the same, regardless of the location of the processes in the network or the operating
system where they run. Processes can communicate within a single CPU, across a
backplane, across an Ethernet, or across any connected combination of networks.
Socket communications can occur between VxWorks tasks and host system
processes in any combination. In all cases, the communications appear identical to
the application—except, of course, for the speed of the communications.

VxWorks sockets are UNIX BSD 4.3 compatible. However, VxWorks does not
support signal functionality for sockets. There are a number of complex network
programming issues that are beyond the scope of this guide. For additional
information, consult a socket-programming book, such as one of the following:

— Internetworking with TCP/IP Volume 111 by Douglas Comer and David Stevens

— UNIX Network Programming by Richard Stevens

251

Table 5-3

VxWorks 5.3.1
Programmer’s Guide

— The Design and Implementation of the 4.3 BSD UNIX Operating System by Leffler,

McKusick, Karels and Quarterman
— TCP/IP lllustrated, Vol. 1, by Richard Stevens
— TCP/IP IHlustrated, Vol. 2, by Gary Wright and Richard Stevens

Table 5-3 shows the basic socket routines provided by sockLib. Table 5-4 lists
ioctl() functions supported by sockets. Applications must put socket port

numbers (the sin_port field in a struct sockaddr) in network- byte order, with

htons(); see Network Byte Order, p.250.

Socket Routines

Call Description

socket() Create a socket.

bind() Bind a name to a socket.

listen() Enable connections to a TCP socket.
accept() Accept a connection on a TCP socket.
connect() Initiate a connection on a socket.
connectWithTimeout() Attempt a connection over a socket for a fixed duration.
shutdown() Shut down a socket connection.
send() Send data to a TCP socket.

sendto() Send a message to a UDP socket.
sendmsg() Send a message to a UDP socket.
recv() Receive data from a TCP socket.

recvfrom()
recvmsg()
setsockopt()
getsockopt()
getsockname()
getpeername()
select()

read()

write()

ioctl()

close()

Receive a message from a UDP socket.

Receive a message from a UDP socket.

Set socket options.

Get socket options.

Get the name of a socket.

Get the name of a connected peer socket.

Perform synchronous I/0 multiplexing on a socket.
Read from a socket.

Write to a socket.

Perform control functions on a socket.

Close a socket.

252

Table 5-4

5

Network
1/0 Control Functions Supported by Sockets
Function Description
FIONBIO Turn non-blocking 1/0 on/off.
FIONREAD Report the number of bytes available to read on a socket.
SIOCATMARK Report whether there is out-of-band data to be read on a socket.

Stream Sockets (TCP)

Table 5-5

The Transmission Control Protocol (TCP) provides reliable, two-way transmission
of data. In a TCP communication, two sockets are connected, allowing a reliable
byte-stream to flow between them in either direction. TCP is referred to as a virtual

circuit protocol, because it acts as though a circuit existed between the two sockets.

A good analogy for TCP communications is a telephone system. Connecting two
sockets is similar to calling from one phone to another. After the connection is
established, you can write and read data (talk and listen).

Table 5-5 shows the steps in establishing socket communications with TCP, and the
analogy of each step with telephone communications.

TCP Analogy to Telephone Communication

Task 1 Task 2

Waits Calls Function Analogy

socket() socket() Create sockets. Hook up telephones.
bind() Assign address to socket. Assign phone numbers.
listen() Allow others to connect to socket. Allow others to call.

connect() Request connection to another socket. Dial another phone’s number.

accept() Complete connection between Answer phone and establish
sockets. connection.

write() write() Send data to other socket. Talk.

read() read() Receive data from other socket. Listen.

close() close() Close sockets. Hang up.

253

Example 5-1

VxWorks 5.3.1
Programmer’s Guide

Stream Sockets (TCP)

The following code example uses a client-server communication model. The server
communicates with clients using stream-oriented (TCP) sockets. The main server
loop, in tcpServerWorkTask(), reads requests, prints the client’s message to the
console, and, if requested, sends a reply back to the client. The client builds the
request by prompting for input. It sends a message to the server and, optionally,
waits for a reply to be sent back. To simplify the example, we assume that the code
is executed on machines that have the same data sizes and alignment.

[* tcpExample.h - header used by both TCP server and client examples */

* defines */

#define SERVER_PORT_NUM 5001 /* server's port number for bind() */

#define SERVER_WORK_PRIORITY 100 /* priority of server's work task */

#define SERVER_STACK_SIZE ~ 10000 /* stack size of server's work task */

#define SERVER_MAX_CONNECTIONS 4 /* max clients connected at a time */

#define REQUEST_MSG_SIZE 1024 /* max size of request message */
#define REPLY_MSG_SIZE 500 /* max size of reply message */

[* structure for requests from clients to server */
struct request
int reply; /* TRUE = request reply from server */

int msgLen; /* length of message text */
char message[REQUEST_MSG_SIZE]; /* message buffer */

[* tcpClient.c - TCP client example */

/*

DESCRIPTION

This file contains the client-side of the VxWorks TCP example code.
The example code demonstrates the usage of several BSD 4.3-style
socket routine calls.

*

[* includes */

#include "vxWorks.h"
#include "sockLib.h"
#include "inetLib.h"
#include "stdioLib.h"
#include "strLib.h"
#include "hostLib.h"
#include "ioLib.h"
#include "tcpExample.h”

254

5
Network

I
*

* tcpClient - send requests to server over a TCP socket
*

* This routine connects over a TCP socket to a server, and sends a
* user-provided message to the server. Optionally, this routine

* waits for the server's reply message.

*

* This routine may be invoked as follows:

* ->tcpClient "remoteSystem"

Message to send:

Hello out there

Would you like a reply (Y or N):

y

value = 0 = 0x0

-> MESSAGE FROM SERVER:
Server received your message

E T

RETURNS: OK, or ERROR if the message could not be sent to the server.
*
/

STATUS tcpClient
(

char * serverName /* name or IP address of server */
)
{

struct request myRequest; /* request to send to server */
struct sockaddr_in serverAddr; /* server's socket address */

char replyBuffREPLY_MSG_SIZE]; /* buffer for reply */
char reply; * if TRUE, expect reply back */

int sockAddrSize; /* size of socket address structure */
int sFd; [* socket file descriptor */

int mlen; * length of message */

[* create client's socket */
if ((sFd = socket (AF_INET, SOCK_STREAM, 0)) == ERROR)
perror ("socket");

return (ERROR);
}

/* bind not required - port number is dynamic */
* build server socket address */

sockAddrSize = sizeof (struct sockaddr_in);

bzero ((char *) &serverAddr, sockAddrSize);
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons (SERVER_PORT_NUM);

if (((serverAddr.sin_addr.s_addr = inet_addr (serverName)) == ERROR) &&
((serverAddr.sin_addr.s_addr = hostGetByName (serverName)) == ERROR))

perror ("unknown server name");
close (sFd);
return (ERROR);

255

VxWorks 5.3.1
Programmer’s Guide

* connect to server */
if (connect (sFd, (struct sockaddr *) &serverAddr, sockAddrSize) == ERROR)
{

perror (“connect");
close (sFd);
return (ERROR);
}

/* build request, prompting user for message */

printf ("Message to send: \n");

mlen =read (STD_IN, myRequest.message, REQUEST_MSG_SIZE);
myRequest.msglLen = mlen;

myRequest.message[mlen - 1] ="\0";

printf ("Would you like a reply (Y or N): \n");
read (STD_IN, &reply, 1);
switch (reply)
{
case'y"
case 'Y": myRequest.reply = TRUE;
break;

default: myRequest.reply = FALSE;
break;
}

/* send request to server */
if (write (sFd, (char *) &myRequest, sizeof (myRequest)) == ERROR)
{
perror (“write");
close (sFd);
return (ERROR);
if (myRequest.reply) [* if expecting reply, read and display it */
if (read (sFd, replyBuf, REPLY_MSG_SIZE) < 0)
perror ("read");

close (sFd);
return (ERROR);
}

printf ("MESSAGE FROM SERVER:\n%s\n", replyBuf);
}

close (sFd);
return (OK);

256

5
Network

[* tcpServer.c - TCP server example */

/*

DESCRIPTION

This file contains the server-side of the VxWorks TCP example code.
The example code demonstrates the useage of several BSD 4.3-style
socket routine calls.

*

[* includes */

#include "vxWorks.h"
#include "sockLib.h"
#include "inetLib.h"
#include "taskLib.h"
#include "stdioLib.h"
#include "strLib.h"
#include "ioLib.h"
#include “fioLib.h"
#include "tcpExample.h”

/* function declarations */

VOID tcpServerWorkTask (int sFd, char * address, u_short port);

I
*

* tcpServer - accept and process requests over a TCP socket
*

* This routine creates a TCP socket, and accepts connections over the socket
* from clients. Each client connection is handled by spawning a separate

* task to handle client requests.

*

* This routine may be invoked as follows:

* ->sptcpServer

task spawned: id = Ox3a6flc, name =t1

value = 3829532 = 0x3a6flc

-> MESSAGE FROM CLIENT (Internet Address 150.12.0.10, port 1027):
Hello out there

* %k 3k 3k ok

RETURNS: Never, or ERROR if a resources could not be allocated.
*/

STATUS tcpServer (void)

struct sockaddr_in serverAddr; /* server's socket address */
struct sockaddr_in clientAddr; /* client's socket address */

int sockAddrSize; /* size of socket address structure */
int sFd; * socket file descriptor */

int newkd; [* socket descriptor from accept */

int ix=0; /* counter for work task names */

char workName[16]; /* name of work task */

257

VxWorks 5.3.1
Programmer’s Guide

/* set up the local address */

sockAddrSize = sizeof (struct sockaddr_in);

bzero ((char *) &serverAddr, sockAddrSize);
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons (SERVER_PORT_NUM);
serverAddr.sin_addr.s_addr = htonl INADDR_ANY);

[* create a TCP-based socket */
if (SFd = socket (AF_INET, SOCK_STREAM, 0)) == ERROR)
{

perror ("socket");
return (ERROR);

}

* bind socket to local address */

if (bind (sFd, (struct sockaddr *) &serverAddr, sockAddrSize) == ERROR)
perror ("bind");

close (sFd);
return (ERROR);

[* create queue for client connection requests */
if (listen (sFd, SERVER_MAX_CONNECTIONS) == ERROR)
perror ("listen");

close (sFd);
return (ERROR);
}

[* accept new connect requests and spawn tasks to process them */
FOREVER

if (newFd = accept (sFd, (struct sockaddr *) &clientAddr,
&sockAddrSize)) == ERROR)

perror (“accept");
close (sFd);
return (ERROR);

sprintf (workName, "tTcpWork%d", ix++);
if (taskSpawn(workName, SERVER_WORK_PRIORITY, 0, SERVER_STACK_SIZE,
(FUNCPTR) tcpServerWorkTask, newfd,
(int) inet_ntoa (clientAddr.sin_addr), ntohs (clientAddr.sin_port),
0,0,0,0,0,0,0) == ERROR)
{

[* if taskSpawn fails, close fd and return to top of loop */

perror (“taskSpawn");
close (newFd);

258

5
Network

I
*

* tcpServerWorkTask - process client requests
*

* This routine reads from the server's socket, and processes client
* requests. If the client requests a reply message, this routine

* will send a reply to the client.

*

* RETURNS: N/A.
*/

VOID tcpServerWorkTask
(

int skd, * server's socket fd */

char * address, [* client's socket address */

u_short port /* client's socket port */

)

{

struct request clientRequest; /* request/message from client */
int nRead; I* number of bytes read */

static char replyMsg[] = "Server received your message";

/* read client request, display message */

while ((nRead = fioRead (sFd, (char *) &clientRequest,
sizeof (clientRequest))) > 0)

{
printf ("MESSAGE FROM CLIENT (Internet Address %s, port %d):\n%s\n",
address, port, clientRequest.message);

free (address); [* free malloc from inet_ntoa() */

if (clientRequest.reply)
if (write (sFd, replyMsg, sizeof (replyMsg)) == ERROR)
perror (“write");

if (hnRead == ERROR) [* error from read() */
perror ("read");

close (sFd); /* close server socket connection */

Datagram Sockets (UDP)

The User Datagram Protocol (UDP) provides a simpler but less robust
communication method. In a UDP communication, data is sent between sockets in
separate, unconnected, individually addressed packets called datagrams.

As TCP is analogous to telephone communications, UDP is analogous to sending
mail. Each UDP packet is like a letter. Each packet carries the address of both the
destination and the sender. Like the mail, UDP is unreliable: packets that are lost
or out-of-sequence are not reported.

259

Example 5-2

VxWorks 5.3.1
Programmer’s Guide

Datagram Sockets (UDP)

The following code example uses a client-server communication model. The server
communicates with clients using datagram-oriented (UDP) sockets. The main
server loop, in udpServer(), reads requests and optionally displays the client’s
message. The client builds the request by prompting the user for input. Note that
this code assumes that it executes on machines that have the same data sizes and
alignment.

/* udpExample.h - header used by both UDP server and client examples */

#define SERVER_PORT_NUM 5002 /* server's port number for bind() */
#define REQUEST_MSG_SIZE 1024 /* max size of request message */

[* structure used for client's request */
struct request
{
int display; /* TRUE = display message */
char message[REQUEST_MSG_SIZE]; /* message buffer */

/* udpClient.c - UDP client example */

/*

DESCRIPTION

This file contains the client-side of the VxWorks UDP example code.
The example code demonstrates the useage of several BSD 4.3-style
socket routine calls.

*

[* includes */

#include "vxWorks.h"
#include "sockLib.h"
#include "inetLib.h"
#include "stdioLib.h"
#include "strLib.h"
#include "hostLib.h"
#include "ioLib.h"
#include "udpExample.h"

I
*

* udpClient - send a message to a server over a UDP socket
*
* This routine sends a user-provided message to a server over a UDP socket.

* Optionally, this routine can request that the server display the message.
* This routine may be invoked as follows:

260

5
Network

-> udpClient "remoteSystem"

Message to send:

Greetings from UDP client

Would you like server to display your message (Y or N):

y
value = 0 = 0x0

* %k ok ok ok %k Ok

RETURNS: OK, or ERROR if the message could not be sent to the server.
*

STATUS udpClient

char * serverName /* name or IP address of server */

)
{

struct request myRequest; /* request to send to server */
struct sockaddr_in serverAddr; /* server's socket address */

char display; /*if TRUE, server prints message */
int sockAddrSize; /* size of socket address structure */
int sFd; * socket file descriptor */

int mlen; /* length of message */

[* create client's socket */
if ((sFd = socket (AF_INET, SOCK_DGRAM, 0)) == ERROR)

perror ("socket");
return (ERROR);
}

/* bind not required - port number is dynamic */
/* build server socket address */

sockAddrSize = sizeof (struct sockaddr_in);

bzero ((char *) &serverAddr, sockAddrSize);
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons (SERVER_PORT_NUM);

if ((serverAddr.sin_addr.s_addr = inet_addr (serverName)) == ERROR) &&
((serverAddr.sin_addr.s_addr = hostGetByName (serverName)) == ERROR))

perror ("unknown server name");
close (sFd);
return (ERROR);

/* build request, prompting user for message */

printf ("Message to send: \n");

mlen =read (STD_IN, myRequest.message, REQUEST_MSG_SIZE);
myRequest.message[mlen - 1] =\0";

printf ("Would you like the server to display your message (Y or N): \n");

read (STD_IN, &display, 1);
switch (display)

261

VxWorks 5.3.1
Programmer’s Guide

{

case'y"

case 'Y": myRequest.display = TRUE;
break;

default: myRequest.display = FALSE;
break;

}

/* send request to server */

if (sendto (sFd, (caddr_t) &myRequest, sizeof (myRequest), O,
(struct sockaddr *) &serverAddr, sockAddrSize) == ERROR)

perror (“sendto");
close (sFd);
return (ERROR);

close (sFd);
return (OK);

[* udpServer.c - UDP server example */

/*

DESCRIPTION

This file contains the server-side of the VxWorks UDP example code.
The example code demonstrates the useage of several BSD 4.3-style
socket routine calls.

*

[* includes */

#include "vxWorks.h"
#include "sockLib.h"
#include "inetLib.h"
#include "stdioLib.h"
#include "strLib.h"
#include "ioLib.h"
#include "fioLib.h"
#include "udpExample.h"

I
*

* udpServer - read from UDP socket and display client's message if requested

* Example of VxWorks UDP server:

* ->spudpServer

task spawned: id = Ox3alféc, name = t2

value = 3809132 = 0x3alféc

-> MESSAGE FROM CLIENT (Internet Address 150.12.0.11, port 1028):
Greetings from UDP client

* % ok 3k ok ok

RETURNS: Never, or ERROR if a resources could not be allocated.
*/

262

5
Network

STATUS udpServer (void)

struct sockaddr_in serverAddr; /* server's socket address */
struct sockaddr_in clientAddr; /* client's socket address */
struct request clientRequest; /* request/Message from client */

int sockAddrSize; /* size of socket address structure */
int skd; [* socket file descriptor */
char inetAddr{INET_ADDR_LEN];

* buffer for client's inet addr */
* set up the local address */

sockAddrSize = sizeof (struct sockaddr_in);

bzero ((char *) &serverAddr, sockAddrSize);
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons (SERVER_PORT_NUM);
serverAddr.sin_addr.s_addr = htonl INADDR_ANY);

[* create a UDP-based socket */

if ((SFd = socket (AF_INET, SOCK_DGRAM, 0)) == ERROR)
{

perror ("socket");
return (ERROR);
}

/* bind socket to local address */

if (bind (sFd, (struct sockaddr *) &serverAddr, sockAddrSize) == ERROR)

perror ("bind");
close (sFd);
return (ERROR);

/* read data from a socket and satisfy requests */
FOREVER

if (recvfrom (sFd, (char *) &clientRequest, sizeof (clientRequest), 0,
(struct sockaddr *) &clientAddr, &sockAddrSize) == ERROR)

perror (“"recvfrom");
close (sFd);
return (ERROR);

[* if client requested that message be displayed, print it */
if (clientRequest.display)

{

* convert inet address to dot notation */

inet_ntoa_b (clientAddr.sin_addr, inetAddr);

printf ("MSG FROM CLIENT (Internet Address %os, port %d):\n%s\n",
inetAddr, ntohs (clientAddr.sin_port), clientRequest.message);

}

263

VxWorks 5.3.1
Programmer’s Guide

5.2.7 The Zbuf Socket Interface

VxWorks includes an alternative set of socket calls based on a data abstraction
called a zbuf, which permits sharing data buffers (or portions of data buffers)
between separate software modules. The zbuf socket interface allows applications to
read and write UNIX BSD 4.3 sockets without copying data between application
and network buffers. You can use zbufs with either UDP or TCP applications. The
TCP subset of this new interface is sometimes called “zero-copy TCP.”

Zbuf-based socket calls are interoperable with the standard BSD socket interface: the
other end of a socket has no way of telling whether your end is using zbuf-based
calls or traditional calls.

However, zbuf-based socket calls are not source-compatible with the standard BSD
socket interface: you must call different socket routines to use the zbuf interface.
Applications that use the zbuf interface are thus less portable.

A WARNING: The send socket buffer size must exceed that of any zbufs sent over the
socket.

To link in (and initialize) the zbuf socket interface, define INCLUDE_ZBUF_SOCK
in configAll.h.

Zbuf Calls to Send Existing Data Buffers

The simplest way to use zbuf sockets is to call either zbufSockBufSend() (in place
of send() for a TCP connection) or zbufSockBufSendto() (in place of sendto() for
a UDP datagram). In either case, you supply a pointer to your application’s data

buffer containing the data or message to send, and the network protocol uses that
same buffer rather than copying the data out of it.

A WARNING: The speedups based on using zbufs depend on allowing different
modules to share the same buffers. To work, your application must neither modify
nor free the data buffer while network software is still using it. Instead of freeing a
buffer explicitly, supply a free-routine callback: a pointer to a routine that knows
how to free the buffer. The zbuf library keeps track of how many zbufs point to a
data buffer, and calls the free routine when the data buffer is no longer in use.

To receive socket data using zbufs, see the following sections. Manipulating the Zbuf
Data Structure, p.265 describes the routines to create and manage zbufs, and Zbuf
Socket Calls, p.273 introduces the remaining zbuf-specific socket routines. See also
the reference entries for zbufLib and zbufSockLib.

264

5
Network

Manipulating the Zbuf Data Structure

A zbuf has three essential properties:
= A zbuf holds a sequence of bytes.

= The data in a zbuf is organized into one or more segments of contiguous data.
Successive zbuf segments are not usually contiguous to each other.

= Zbuf segments refer to data buffers through pointers. The underlying data
buffers can be shared by more than one zbuf segment.

Zbuf segments are at the heart of how zbufs minimize data copying: if you have a
data buffer, you can incorporate it (by reference, so that only pointers and lengths
move around) into a new zbuf segment. Conversely, you can get pointers to the
data in zbuf segments, and examine the data there directly.

Zbuf Byte Locations

You can address the contents of a zbuf by byte locations. A zbuf byte location has
two parts, an offset and a segment ID.

An offset is a signed integer (type int): the distance in bytes to a portion of data in
the zbuf, relative to the beginning of a particular segment. Zero refers to the first
byte in a segment; negative integers refer to bytes in previous segments; and
positive integers refer to bytes after the start of the current segment.

A segment ID is an arbitrary integer (type ZBUF_SEG) that identifies a particular
segment of a zbuf. You can always use NULL to refer to the first segment of a zbuf.

Figure 5-4 shows a simple zbuf with data organized into two segments, with
offsets relative to the first segment. This is the most efficient addressing scheme to
refer to bytes a, b, or ¢ in the figure.

Figure 5-4 Zbuf Addressing Relative to First Segment (NULL)

265

Figure 5-5

VxWorks 5.3.1
Programmer’s Guide

Figure 5-5 shows the same zbuf, but labelled with offsets relative to the second
segment. This is the most efficient addressing scheme to refer to bytes d, e, f, or g
in the figure.

Zbuf Addressing Relative to Second Segment

Two special shortcuts give the fastest access to either the beginning or the end of a
zbuf. The constant ZBUF_END refers to the position after all existing bytes in the
zbuf. Similarly, ZBUF_BEGIN refers to the position before all existing bytes. These
constants are the only offsets with meanings not relative to a particular segment.

When you insert data in a zbuf, the new data is always inserted before the byte
location you specify in the call to an insertion routine. That is, the byte location you
specify becomes the address of the newly inserted data.

Creating and Destroying Zbufs

Table 5-6

Zbuf Creation and Deletion Routines

Call Description
zbufCreate() Create an empty zbuf.
zbufDelete() Delete a zbuf and free any associated segments.

To create a new zbuf, call zbufCreate(). The routine takes no arguments, and
returns a zbuf identifier (type ZBUF_ID) for a zbuf containing no segments. After
you have the zbuf ID, you can attach segments or otherwise insert data. While the
zbuf is empty, NULL is the only valid segment ID, and 0 the only valid offset.

When you no longer need a particular zbuf, call zbufDelete(). Its single argument
is the ID for the zbuf to delete. The zbufDelete() routine calls the free routine
associated with each segment in the zbuf, for segments that are not shared by other
zbufs. After you delete a zbuf, its zbuf ID is meaningless; any reference to a deleted
zbuf ID is an error.

266

5

Network
Getting Data In and Out of Zbufs
Table 5-7 Zbuf Data Copying Routines
Call Description
zbuflnsertBuf() Create a zbuf segment from a buffer and insert into a zbuf.
zbuflnsertCopy() Copy buffer data into a zbuf.
zbufExtractCopy() Copy data from a zbuf to a buffer.

The usual way to place data in a zbuf is to call zbuflnsertBuf(). This routine builds
a zbuf segment pointing to an existing data buffer, and inserts the new segment at
whatever byte location you specify in a zbuf. You can also supply a callback
pointer to a free routine, which the zbuf library calls when no zbuf segments point
to that data buffer.

Because the purpose of the zbuf socket interface is to avoid data copying, the need
to actually copy data into a zbuf (rather than designating its location as a shareable
buffer) occurs much less frequently. When that need does arise, however, the
routine zbuflnsertCopy() is available. This routine does not require a callback
pointer to a free routine, because the original source of the data is not shared.

Similarly, the most efficient way to examine data in zbufs is to read it in place,
rather than to copy it to another location. However, if you must copy a portion of
data out of a zbuf (for example, to guarantee the data is contiguous, or to place it
in a data structure required by another interface), call zbufExtractCopy()
specifying what to copy (zbuf ID, byte location, and the number of bytes) and
where to put it (an application buffer).

Operations on Zbufs

Table 5-8

The routines listed in Table 5-8 perform several fundamental operations on zbufs.

Zbuf Operations

Call Description

zbufLength() Determine the length of a zbuf, in bytes.
zbufDup() Duplicate a zbuf.

zbuflnsert() Insert a zbuf into another zbuf.
zbufSplit() Split a zbuf into two separate zbufs.
zbufCut() Delete bytes from a zbuf.

267

VxWorks 5.3.1
Programmer’s Guide

The routine zbufLength() reports how many bytes are in a zbuf.

The routine zbufDup(') provides the simplest mechanism for sharing segments
between zbufs: it produces a new zbuf ID that refers to some or all of the data in
the original zbuf. You can exploit this sort of sharing to get two different views of
the same data. For example, after duplicating a zbuf, you can insert another zbuf
into one of the two duplicates, with zbuflnsert(). None of the data in the original
zbuf segments moves, yet after some byte location (the byte location where you
inserted data) addressing the two zbufs gives completely different data.

The zbufSplit() routine divides one zbuf into two; you specify the byte location for
the split, and the result of the routine is a new zbuf ID. The new zbuf’s data begins
after the specified byte location. The original zbuf ID also has a modified view of
the data: it is truncated to the byte location of the split. However, none of the data
in the underlying segments moves through all this: if you duplicate the original
zbuf before splitting it, three zbuf IDs share segments—the duplicate permits you
to view the entire original range of data, another zbuf contains a leading fragment,
and the third zbuf holds the trailing fragment.

Similarly, if you call zbufCut() to remove some range of bytes from within a zbuf,
the effects are visible only to callers who view the data through the same zbuf ID
you used for the deletion; other zbuf segments can still address the original data
through a shared buffer.

For the most part, these routines do not free data buffers or delete zbufs, but there
are two exceptions:

= zbuflnsert() deletes the zbuf ID it inserts. No segments are freed, because they
now form part of the larger zbuf.

= If the bytes you remove with zbufCut() span one or more complete segments,
the free routines for those segments can be called (if no other zbuf segment
refers to the same data).

The data-buffer free routine runs only when none of the data in a segment is part
of any zbuf; to avoid data copying, zbuf manipulation routines such as zbufCut()
record which parts of a segment are currently in a zbuf, postponing the deletion of
a segment until no part of its data is in use.

Segments of Zbufs

The routines in Table 5-9 give your applications access to the underlying segments
in a zbuf.

By specifying a NULL segment ID, you can address the entire contents of a zbuf as
offsets from its very first data byte. However, it is always more efficient to address

268

Table 5-9

5

Network
Zbuf Segment Routines
Call Description
zbufSegFind() Find the zbuf segment containing a specified byte location.
zbufSegNext() Get the next segment in a zbuf.
zbufSegPrev() Get the previous segment in a zbuf.
zbufSegData() Determine the location of data in a zbuf segment.
zbufSegLength() Determine the length of a zbuf segment.

data in a zbuf relative to the closest segment. Use zbufSegFind() to translate any
zbuf byte location into the most local form.

The pair zbufSegNext() and zbufSegPrev() are useful for going through the
segments of a zbuf in order, perhaps in conjunction with zbufSegLength().

Finally, zbufSegData() allows the most direct access to the data in zbufs: it gives
your application the address where a segment’s data begins. If you manage
segment data directly using this pointer, bear the following restrictions in mind:

Do not change data if any other zbuf segment is sharing it.

As with any other direct memory access, it is up to your own code to restrict
itself to meaningful data: remember that the next segment in a zbuf is usually
not contiguous. Use zbufSegLength() as a limit, and zbufSegNext() when you
exceed that limit.

Example: Manipulating Zbuf Structure

The following interaction illustrates the use of some of the previously described
zbufLib routines, and their effect on zbuf segments and data sharing. To keep the
example manageable, the zbuf data used is artificially small, and the execution
environment is the Tornado shell (for details on this shell, see the Tornado User’s
Guide: Shell).

To begin with, we create a zbuf, and use its ID zld to verify that a newly created
zbuf contains no data; zbufLength() returns a result of 0.

-> zId = zbufCreate()

new symbol "zld" added to symbol table.

zld = 0x3b58e8: value = 3886816 = 0x3b4ee0
-> zbufLength (zld)

value = 0 = 0x0

269

VxWorks 5.3.1
Programmer’s Guide

Next, we create a data buffer bufl, insert it into zbuf zld, and verify that
zbufLength(') now reports a positive length. To keep the example simple, buflisa
literal string, and therefore we do not supply a free-routine callback argument to
zbufinsertBuf().

-> bufl ="| cannot repeat enough!"

new symbol "bufl" added to symbol table.

bufl = 0x3b5898: value = 3889320 = 0x3b58a8 = bufl + 0x10
-> zbufinsertBuf (zld, 0, 0, bufl, strlen(bufl), 0, 0)

value = 3850240 = 0x3ac000

-> zbufLength (zld)

value = 23 = 0x17

To examine the effect of other zbuf operations, it is useful to have a zbuf-display

routine. The remainder of this example uses a routine called zbufDisplay() for that
purpose; for the complete source code, see Example 5-3.

For each zbuf segment, zbufDisplay() shows the segment ID, the start-of-data
address, the offset from that address, the length of the segment, and the data in the
segment as a character string. The following display of zld illustrates that the
underlying data in its only segment is still at the bufl address (0x3b58a8), because
zbuflnsertBuf() incorporates its buffer argument into the zbuf without copying
data.

-> |d </usr/jane/zbuf-examples/zbufDisplay.o

value = 3890416 = 0x3b5cf0 = zbufDisplay.o_bss + 0x8

-> zbufDisplay zId

seglD 0x3ac000 at 0x3b58a8 + 0x0 (23 bytes): | cannot repeat enough!
value = 0 = 0x0

When we copy the zbuf, the copy has its own IDs, but still uses the same data
address:

-> zIld2 = zbufDup (z!d,0,0,23)

new symbol “zld2" added to symbol table.

zId2 = 0x3b5ff0: value = 3886824 = 0x3b4ee8

-> zbufDisplay zId2

seglD 0x3abf80 at 0x3b58a8 + 0x0 (23 bytes): | cannot repeat enough!

value = 0 = 0x0
If we insert a second buffer into the middle of the existing data in zld, there is still
no data copying. Inserting the new buffer gives us a zbuf made up of three
segments—but notice that the address of the first segment is still the start of bufl,
and the third segment points into the middle of bufl:

-> buf2 =" this"

new symbol "buf2" added to symbol table.

buf2 = 0x3b5fb0: value = 3891136 = 0x3b5fcO = buf2 + 0x10

-> zbufinsertBuf (zld, 0, 15, buf2, strlen(buf2), 0, 0)
value = 3849984 = 0x3abf00

270

5
Network

-> zbufDisplay zId

segID 0x3ac000 at 0x3b58a8 + 0x0 (15 bytes): | cannot repeat
segID 0x3abf00 at 0x3b5fcO + 0x0 (5 bytes): this

segID 0x3abe80 at 0x3b58b7 + 0x0 (8 bytes): enough!

value =0 = 0x0

Because the underlying buffer is not modified, both bufl and the duplicate zbuf
z1d2 still contain the original string, rather than the modified one now in zld:

-> printf ("%s\n", bufl)

| cannot repeat enough!

value = 24 = 0x18

-> zbufDisplay zId2

segID 0x3abf80 at 0x3b58a8 + 0x0 (23 bytes): | cannot repeat enough!
value =0 = 0x0

The zbufDup() routine can also select part of a zbuf without copying, for instance

to incorporate some of the same data into another zbuf—or even into the same
zbuf, as in the following example:

-> zTmp = zbufDup (zld, 0, 15, 5)

new symbol "zTmp" added to symbol table.

zTmp = 0x3b5f70: value = 3886832 = 0x3b4ef0

-> zbufinsert (zId, 0, 15, zTmp)

value = 3849728 = 0x3abe00

-> zbufDisplay zId

segID 0x3ac000 at 0x3b58a8 + 0x0 (15 bytes): | cannot repeat
segID 0x3abe00 at 0x3b5fcO + 0x0 (5 bytes): this
segID 0x3abf00 at 0x3b5fcO + 0x0 (5 bytes): this
segID 0x3abe80 at 0x3b58b7 + 0x0 (8 bytes): enough!
value =0 = 0x0

After zbuflnsert() combines two zbufs, the second zbuf ID (zTmp in this example)
is automatically deleted. Thus, zZTmp is no longer a valid zbuf ID—for example,
zbufLength() returns ERROR:

-> zbufLength (zTmp)

value = -1 = Oxffffffff = zId2 + Oxffc4a00f
However, you must still delete the remaining two zbuf IDs explicitly when they are
no longer needed. This releases all associated zbuf-structure storage. In a real
application, with free-routine callbacks filled in, it also calls the specified free
routine on the data buffers, as follows:

-> zbufDelete (zId)

value = 0 = 0x0

-> zbufDelete (zId2)
value = 0 = 0x0

271

Example 5-3

VxWorks 5.3.1
Programmer’s Guide

Zbuf Display Routine

The following is the complete source code for the zbufDisplay() utility used in the
preceding example:

[* zbufDisplay.c - zbuf example display routine */
/¥ includes */

#include "vxWorks.h"

#include "zbufLib.h"

#include "ioLib.h"
#include "stdio.h"

!
*

* zbufDisplay - display contents of a zbuf
*

* RETURNS: OK, or ERROR if the specified data could not be displayed.
*

STATUS zbufDisplay

(

ZBUF_ID zbufld, [* zbuf to display */

ZBUF_SEG zbufSeg, [* zbuf segment base for <offset> */
int offset, [* relative byte offset */

int len, /* number of bytes to display */

BOOL silent /* do not print out debug info */

)

int lenData;
char* pData;

/* find the most-local byte location */

if (zbufSeg = zbufSegFind (zbufld, zbufSeg, &offset)) == NULL)
return (ERROR);

if (len <=0)
len = ZBUF_END;

while ((len != 0) && (zbufSeg != NULL))

/* find location and data length of zbuf segment */

pData = zbufSegData (zbufld, zbufSeg) + offset;
lenData = zbufSegLength (zbufld, zbufSeg) - offset;
lenData = min (len, lenData); /* print all of seg ? */

if (silent)
printf ("segID 0x%x at 0x%x + 0x%xX (%2d bytes): ",
(int) zbufSeg, (int) pData, offset, lenData);
write (STD_OUT, pData, lenData); /* display data */
if (silent)
printf ("\n");

272

5
Network

zbufSeg = zbufSegNext (zbufld, zbufSeq); /* update segment */

len -= lenData; [* update length */
offset = 0; * no more offset */
}

return (OK);
}

Limitations of the Zbuf Implementation

Zbuf Socket Calls

Table 5-10

The following zbuf limitations are due to the current implementation; they are not
inherent to the data abstraction. They are described because they can have an
impact on application performance.

— References to data in zbuf segments before a particular location (whether with
zbufSegPrev(), or with a negative offset in a byte location) are significantly
slower than references to data after a particular location.

— The data in small zbuf segments (less than 512 bytes) is sometimes copied,
rather than propagating references to it.

The zbuf socket calls listed in Table 5-10 are named to emphasize parallels with the
standard BSD socket calls: thus, zbufSockSend() is the zbuf version of send(), and
zbufSockRecvfrom() is the zbuf version of recvfrom(). The arguments also
correspond directly to those of the standard socket calls.

Zbuf Socket Library Routines

Call Description

zbufSockLiblnit() Initialize socket libraries (called automatically with
INCLUDE_SOCK_ZBUF).

zbufSockSend() Send zbuf data to a TCP socket.

zbufSockSendto() Send a zbuf message to a UDP socket.

zbufSockBufSend() Create a zbuf and send it as TCP socket data.

zbufSockBufSendto() Create a zbuf and send it as a UDP socket message.

zbufSockRecv() Receive data in a zbuf from a TCP socket.

zbufSockRecvfrom() Receive a message in a zbuf from a UDP socket.

For a detailed description of each routine, see the corresponding reference entry.

273

VxWorks 5.3.1
Programmer’s Guide

Standard Socket Calls and Zbuf Socket Calls

Example 5-4

The zbuf socket calls are particularly useful when large data transfer is a significant
part of your socket application. For example, many socket applications contain
sections of code like the following fragment:

pBuffer = malloc (BUFLEN);

while ((readLen = read (fdDevice, pBuffer, BUFLEN)) > 0)

write (fdSock, pBuffer, readLen);

You can eliminate the overhead of copying from the application buffer pBuffer
into the internal socket buffers by recoding to use zbuf socket calls. For example,
the following fragment is a zbuf version of the preceding loop:

pBuffer = malloc (BUFLEN * BUFNUM); /* allocate memory */
for (ix = 0; ix < (BUFNUM - 1); ix++, pBuffer += BUFLEN)
appBufRetn (pBulffer); /* fill list of free bufs */

while ((readLen = read (fdDevice, pBuffer, BUFLEN)) > 0)

zld = zbufCreate (); /* insert into new zbuf */
zbuflnsertBuf (zld, NULL, 0, pBuffer, readLen, appBufRetn, 0);
zbufSockSend (fdSock, zlId, readLen, 0); /* send zbuf */

pBuffer = appBufGet (WAIT_FOREVER); /* get a fresh buffer */

The appBufGet() and appBufRetn() references in the preceding code fragment
stand for application-specific buffer management routines, analogous to malloc()
and free(). In many applications, these routines do nothing more than manipulate
a linked list of free fixed-length buffers.

The TCP Example Server Using Zbufs

For a small but complete example that illustrates the mechanics of using the zbuf
socket library, consider the conversion of the client-server example in Example 5-1
to use zbuf socket calls.

No conversion is needed for the client side of the example; the client operates the
same regardless of whether or not the server uses zbufs. The next example
illustrates the following changes to convert the server side to use zbufs:

— Instead of including the header file sockLib.h, include zbufSockLib.h.

— The data processing component must be capable of dealing with potentially
non-contiguous data in successive zbuf segments. In the TCP example, this
component displays a message using printf(); we can use the zbufDisplay()
routine from Example 5-3 instead.

274

5
Network

— The original TCP example exploits fioRead() to collect the complete message,
rather than calling recv() directly. To achieve the same end while avoiding
data copying by using zbufs, the following example defines a
zbufFioSockRecv() subroutine to call zbufSockRecv() repeatedly until the
complete message is received.

— A new version of the worker routine tcpServerWorkTask() must tie together
these separate modifications, and must explicitly extract the reply and
msgLen fields from the client’s transmission to do so. When using zbufs, these
fields cannot be extracted by reference to the C structure in tcpExample.h
because of the possibility that the data is not contiguous.

The following example shows the auxiliary zbufFioSockRecv() routine and the
zbuf version of tcpServerWorkTask(). To run this code:

1. Start with tcpServer.c as defined in Example 5-1.

2. Include the header file zbufSockLib.h.

3. Insert the zbufDisplay() routine from Example 5-3.
4

Replace the tcpServerWorkTask() definition with the following two routines:

1
*

* zbufFioSockRecv - receive <len> bytes from a socket into a zbuf
*

* This routine receives a specified amount of data from a socket into a
* zbuf, by repeatedly calling zbufSockRecv() until <len> bytes

* are read.

* RETURNS:

* The ID of the zbuf containing <len> bytes of data,

* or NULL if there is an error during the zbufSockRecv() operation.

* SEE ALSO: zbufSockRecv()

*/

ZBUF_ID zbufFioSockRecv
int fd, [* file descriptor of file to read */

int len /* maximum number of bytes to read */

)

{

BOOL first = TRUE; [* first time thru ? */
ZBUF_ID zRecvTotal = NULL; /* zbuf to return */
ZBUF_ID zRecv; [* zbuf read from sock */
int nbytes; /* number of recv bytes */

for (; len > 0; len -= nbytes)

nbytes = len; * set number of bytes wanted */

275

VxWorks 5.3.1
Programmer’s Guide

/* read a zbuf from the socket */

if (((zRecv = zbufSockRecv (fd, 0, &nbytes)) == NULL) ||
(nbytes <= 0))
{

if (zZRecvTotal I= NULL)
zbufDelete (zRecvTotal);

return (NULL);

}

/* append recv'ed zbuf onto end of zRecvTotal */

if (first)
zRecvTotal = zRecy; /* cannot append to empty zbuf */
else if (zbuflnsert (zRecvTotal, NULL, ZBUF_END, zRecv) == NULL)

zbufDelete (zRecv);
zbufDelete (zRecvTotal);
return (NULL);

first = FALSE; [* can append now... */
}

return (zRecvTotal);

}

!
*

* tcpServerWorkTask - process client requests
*

* This routine reads from the server's socket, and processes client
* requests. If the client requests a reply message, this routine

* sends a reply to the client.

*

* RETURNS: N/A.
*

VOID tcpServerWorkTask
(

int skd, I* server's socket fd */

char * address, [* client's socket address */
u_short port /* client's socket port */

)

static char replyMsg[] = "Server received your message";
ZBUF_ID zReplyOrig; /* original reply msg */
ZBUF_ID zReplyDup; /* duplicate reply msg */
ZBUF_ID zRequest; /* request msg from client */
int msgLen; /* request msg length */

int reply; I* reply requested ? */

[* create original reply message zbuf */

276

5
Network

if ((zReplyOrig = zbufCreate ()) == NULL)
{

perror ("zbuf create");
free (address); [* free malloc from inet_ntoa() */
return;

}

/* insert reply message into zbuf */

if (zbufinsertBuf (zReplyOrig, NULL, 0, replyMsg,
sizeof (replyMsg), NULL, 0) == NULL)
perror (“"zbuf insert");
zbufDelete (zReplyOrig);
free (address); [* free malloc from inet_ntoa() */
return;

}
/* read client request, display message */
while ((zRequest = zbufFioSockRecv (sFd, sizeof(struct request))) '= NULL)
[* extract reply field into <reply> */
(void) zbufExtractCopy (zRequest, NULL, 0,
(char *) &reply, sizeof (reply));
(void) zbufCut (zRequest, NULL, 0, sizeof (reply));
[* extract msgLen field into <msgLen> */
(void) zbufExtractCopy (zRequest, NULL, 0,
(char *) &msgLen, sizeof (msgLen));
(void) zbufCut (zRequest, NULL, 0, sizeof (msgLen));
[* duplicate reply message zbuf, preserving original */
if ((zReplyDup = zbufDup (zReplyOrig, NULL, 0, ZBUF_END)) == NULL)
perror (“"zbuf duplicate");

zbufDelete (zRequest);
break;

}

printf ("MESSAGE FROM CLIENT (Internet Address %s, port %d):\n",
address, port);

/* display request message zbuf */

(void) zbufDisplay (zRequest, NULL, 0, msgLen, TRUE);
printf ("\n");

if (reply)

if (zbufSockSend (sFd, zReplyDup, sizeof (replyMsg), 0) < 0)
perror (“zbufSockSend");
}

277

VxWorks 5.3.1
Programmer’s Guide

/* finished with request message zbuf */

zbufDelete (zRequest);
}

free (address); /* free malloc from inet_ntoa() */
zbufDelete (zReplyOrig);
close (sFd);

}

A NOTE: In the interests of brevity, the STATUS return values for several zbuf socket
calls are discarded with casts to void. In a real application, check these return
values for possible errors.

5.2.8 Remote Procedure Calls

Remote Procedure Call (RPC) implements a client-server model of task interaction.
In this model, client tasks request services of server tasks, and then wait for their
reply. RPC formalizes this model and provides a standard protocol for passing
requests and returning replies. Thus, a VxWorks or host system client task can
request services from VxWorks or the host servers in any combination.

Internally, RPC uses sockets as the underlying communication mechanism. RPC,
in turn, is used in the implementation of several higher-level facilities, including
the Network File System (NFS) and remote source-level debugging. Also, RPC
utilities help generate the client interface routines and the server skeleton.

VxWorks implementation of RPC is task-specific. Each task must call rpcTaskInit()
before making any RPC-related calls.

The VxWorks implementation of RPC was originally designed by Sun
Microsystems and is in the public domain. For more information, see the public
domain RPC documentation (supplied in source form in the directories
unsupported/rpc4.0/doc and unsupported/rpc4.0/man), and the reference entry
for rpcLib.

5.2.9 Remote File Access
Files on a remote machine can be accessed from a VxWorks target transparently
with a remote file transfer protocol.

Transparent remote file access allows files on remote systems to be accessed as if they
were local. Applications running under VxWorks can access files on any host
development system, over the network, exactly as if they were local to the

278

5
Network

VxWorks system. For example, /dkO0/file might be a file local to the VxWorks
system, while /host/file might be located on another machine entirely. To VxWorks
applications, the files operate in exactly the same way; only the name is different.

Transparent file access is available with any of three different protocols:

= Remote Shell (RSH) is serviced by the remote shell daemon rshd on the host
system. See the reference entry for remLib.

» Internet File Transfer Protocol (FTP) client and server functions are provided by
routines in ftpLib to transfer files between FTP servers on the network and
invoke other FTP functions. See the reference entries for ftpLib and ftpdLib.

* Network File System (NFS) client protocol is implemented in the 1/0 driver
nfsDrv to access files on any NFS server on the network. This I/0 driver was
tested with many different implementations of NFS file servers on various
operating systems. The NFS server protocol is implemented (for dosFs file
systems) in two libraries, mountLib and nfsdLib.

An alternative remote file transfer protocol that is not transparent is the Trivial File
Transfer Protocol (TFTP) . The VxWorks implementation provides both client and
server functions, and is typically used only for booting. See the reference entries
for tftpLib and tftpdLib.

5.2.10 Remote Command Execution

The VxWorks remote command execution facilities allow applications running
under VxWorks to invoke commands on a remote system and have the results
returned on standard output and standard error over socket connections. This is
accomplished using the remote shell protocol, which on UNIX systems is serviced
by the remote shell daemon rshd. See the reference entry for remLib.

5.2.11 Simple Network Management Protocol (WindNet SNMPv1/v2c Option)

WindNet SNMPv1/v2c is an optional component that provides VxWorks with
SNMP (Simple Network Management Protocol) capabilities. It is a “bilingual”
product, supporting both SNMP version 1 and version 2c. SNMP enables network
devices, called agents, to be monitored, controlled, and configured remotely from
a network management station.

With this component, a VxWorks target can become an SNMP agent, allowing the
target to be managed and configured remotely with SNMP. WindNet
SNMPv1/v2c supports the Management Information Base-11 (MIB-I1) definitions.

279

VxWorks 5.3.1
Programmer’s Guide

WindNet SNMPv1/v2c is extensible. In addition to the base functionality, you can
make extensions to the SNMP agent’s MIB to include information that is specific
to your application and environment.

For detailed information about WindNet SNMPv1/v2c, see the WindNet
SNMPv1/v2c VxWorks Component Release Supplement.

5.3 Configuring the Network

Before the VxWorks network can be used, both the VxWorks and host
development systems must be configured properly. There are two main concerns
in configuring the network: establishing system names and addresses and
establishing appropriate access permissions for each system.

On Windows, your networking software must be compatible with the Microsoft
Windows Sockets (Winsock 1.1) specification. Consult your Windows and
networking software documentation for specific information on configuring your
host system.

On UNIX, most of the configuration procedures consist of setting up various
network “database” files and the system startup files. In VxWorks, most of the
configuration information necessary for access to a single host is contained in the
boot line. Further initialization can either be added to src/config/usrNetwork.c,
handled by application code, or done interactively from the Tornado shell.

The network configuration procedures for VxWorks and a UNIX host are
discussed in this section and summarized in Table 5-11.

5.3.1 Associating Internet Addresses with Network Interfaces

A system’s physical connection to a network is called a network interface. Each
network interface must be assigned a unique Internet (inet) address. Because a
system can be connected to several networks (or can even have several connections
to the same network), it can have several network interfaces.

On a UNIX system, the Internet address of a network interface is specified using
the ifconfig command. For example, to associate the Internet address 150.12.0.1
with the interface In0, enter:

%ifconfig IN0 150.12.0.1

280

5
Network

This is usually done in the UNIX startup file /etc/rc.boot. For more information, see
the UNIX reference entry for ifconfig.

In VXWorks, the Internet address of a network interface is specified by ifAddrSet().
(See the reference entry for ifLib.) To associate the Internet address 150.12.0.2 with
the interface In0, enter:

ifAddrSet ("In0", "150.12.0.2");

The VxWorks network startup routine, usrNetInit() in usrNetwork.c,
automatically sets the address of the interface used to boot VxWorks to the Internet
address specified in the VxWorks boot parameters.

5.3.2 Associating Internet Addresses with Host Names

The underlying Internet protocol uses the 32-bit Internet addresses of systems on
the network. People, however, prefer to use system names that are more
meaningful to them. Thus VxWorks and most host development systems maintain
their own maps between system names and Internet addresses.

On UNIX, /etc/hosts contains the map between system names and Internet
addresses. Each line consists of an Internet address and the computer name(s) at
that address:

150.12.0.2 wx1

There must be a line in this file for each UNIX system and for each VxWorks system
in the network. For more information on /etc/hosts, see your UNIX system
reference entry hosts(5).

In VxWorks, calls to hostAdd() are used to associate system names with Internet
addresses. Make one call to hostAdd() for each system the VxWorks target
communicates with, as follows:

hostAdd ("host", "150.12.0.1");

To associate more than one name with an Internet address, hostAdd() can be called
several times with different host names and the same Internet address. The routine
hostShow() displays the current system name and Internet address associations.!
In the following example, 150.12.0.1 can be accessed with the names host, myHost,
and widget.

-> hostShow
value =0 = 0x0

. This routine is not built in to the Tornado shell. To use it from the Tornado shell, you must
define INCLUDE_NET_SHOW in your VxWorks configuration; see 8. Configuration.

281

VxWorks 5.3.1
Programmer’s Guide

The output is sent to the standard output device, and looks like the following:

hostname inet address aliases
localhost 127.0.0.1
host 150.12.0.1

-> hostAdd "myHost", "150.12.0.1"
value =0 = 0x0

-> hostAdd "widget", "150.12.0.1"
value =0 = 0x0

-> hostShow

value =0 = 0x0

The output is sent to the standard output device, and looks like the following:

hostname inet address aliases
localhost 127.0.0.1
host 150.12.0.1 myHost widget

value = 0 = 0x0

The VxWorks network startup routine, usrNetlnit() in usrNetwork.c,
automatically adds the name of the host VxWorks was booted from, using the host
name specified in the VxWorks boot parameters.

5.3.3 Transparent Remote File Access

As mentioned previously, VxWorks can use any of three different underlying
protocols to provide transparent remote file access: remote shell (RSH), the
Internet File Transfer Protocol (FTP), or the Network File System (NFS).2

The VxWorks I/0 driver netDrv implements remote file access using either of the
first two protocols, RSH or FTP. The netDrv driver uses these protocols to read the
entire remote file into local memory when the file is opened, and to write the file
back when it is closed (if it was modified).

The VxWorks 1/0 driver nfsDrv implements remote file access using NFS. This
protocol transfers only the data actually read or written to the file and thus gains
considerable efficiency, both in terms of memory utilization and throughput.
However, initial setup is somewhat more cumbersome than the other protocols.

The following sections describe the implementation and configuration of these
protocols.

2. If you are developing on a Windows host, check your Windows and networking software
documentation for information on which of these protocols is available and how to use
them.

282

5

Network

Transparent Remote File Access with RSH and FTP

Figure 5-6

A separate VxWorks 1/0 device is created for every host that services remote file
accesses. When a file on one of these devices is accessed, netDrv uses either RSH

or FTP to transfer the file to or from VxWorks.

= Using RSH, netDrv remotely executes the cat command to copy the entire
requested file to and from the target. The RSH protocol is serviced by the
remote shell daemon rshd. See the reference entry for remLib.

= Using FTP, netDrv uses the RETR and STOR commands to retrieve and store
the entire requested file. The netDrv driver uses a library of routines, in ftpLib,
that implements the client side for the Internet File Transfer Protocol. VxWorks
tasks can transfer files to and from FTP servers on the network and invoke

other FTP functions. See the reference entry for ftpLib.

VxWorks can also function as an FTP server (see Figure 5-6). The FTP daemon
running on a VxWorks server handles calls from host system and VVxWorks clients,
and can also boot another VxWorks system. To boot from the VxWorks server with
a local disk, specify the Internet address of the VxWorks server in the host inet
field of the boot parameters, supply a password in the ftp password field, and

specify the shared-memory network as the boot device.

FTP Boot Example

/sd0/vx2 CPUO CPU 1
vxServer vxSlave

SCSI Disk | |
161.27.0.1 161.27.0.2

Shared-Memory Network

In the following example, a slave on the shared-memory network boots from the
master CPU’s local SCSI disk. (For more information on shared-memory networks,
see 5.4 Shared-Memory Networks, p.301.) Note that although VxWorks requires that

283

VxWorks 5.3.1
Programmer’s Guide

the ftp password field not be blank, the password itself is ignored. The following
boot parameters are for the slave processor (vxSlave):

boot device : sm=0x800000
processor number 01

host name : vxServer

file name : Isd0/vx2

inet on backplane (b) :161.27.0.2
host inet (h) :161.27.0.1
user (u) :jane

ftp password (pw) (blank=use rsh) : ignored
The FTP server daemon is initialized on the VxWorks server by default when

INCLUDE_FTP_SERVER is defined in configAll.h. See the reference entry for
ftpdLib.

Allowing Remote File Access with RSH

An RSH request includes the name of the requesting user. The request is treated
like a remote login by that user.

For Windows hosts, the availability and functionality of this facility is determined
by your version of Windows and the networking software you are using. See that
documentation for details.

For UNIX hosts, such remote logins are restricted by means of the host file .rhosts
in the user’s home directory, and more globally with the host file /etc/hosts.equiv.
The .rhosts file contains a list of system names (as defined in /etc/hosts) that have
access to that user’s login. Therefore, make sure that the user’s home directory has
a .rhosts file listing the VxWorks systems, each on a separate line, that are allowed
to access files remotely using the user’s name.

The /etc/hosts.equiv file provides a less selective mechanism. Systems listed in this
file are allowed login access to any user defined on the local system (except the
super-user root). Thus, adding VxWorks system names to /etc/hosts.equiv allows
those VxWorks systems to access files using any user name on the UNIX system.

The FTP protocol, unlike RSH, specifies both the user name and password on every
request. Therefore, when using FTP, the UNIX system does not use the .rhosts or
/etc/hosts.equiv files to authorize remote access.

Creating VxWorks Network Devices that use RSH or FTP

The routine netDevCreate() is used to create a VxWorks 1/0 device for a particular
remote host system:

netDevCreate (" devName"," host", protocol)

284

5

Network
Its arguments are:
devName the name of the device to be created.
host the Internet address of the host in dot notation, or the name of the

remote system as specified in a previous call to hostAdd(). It is
traditional to use as the device name the host name followed by a
colon.

protocol the file transfer protocol: 0 for RSH or 1 for FTP.

For example, the following call creates a new 1/0 device on VxWorks called mars:,
which accesses files on the host system mars using RSH:

-> netDevCreate "mars:", "mars"”, 0

After a network device is created, files on that host can be accessed by appending
the host path name to the device name. For example, the file name
mars:/usr/fred/myfile refers to the file /usr/fred/myfile on the mars system. This
file can be read and/or written exactly like a local file. The following Tornado shell
command opens that file for 1/0 access:

-> fd = open ("mars:/usr/fred/myfile”, 2)

The VxWorks network startup routine, usrNetlnit() in usrNetwork.c,
automatically creates a network device for the host name specified in the VxWorks
boot parameters. If no FTP password was specified in the boot parameters, the
network device is specified with the RSH protocol. If a password was specified,
FTP is used.

Setting the User ID for Remote File Access with RSH or FTP

All FTP and RSH requests to a remote system include the user name. All FTP
requests include a password as well as a user name. From VxWorks you can
specify the user name and password for remote requests by calling iam():

iam (" username"," password")

The first argument to iam() is the user name that identifies you when you access
remote systems. The second argument is the FTP password. This is ignored if RSH
is being used, and can be specified as NULL or 0 (zero).

For example, the following command tells VxWorks that all accesses to remote
systems with RSH or FTP are through user fred, and if FTP is used, the password
is flintstone:

-> jam "fred", "flintstone"

The VxWorks network startup routine, usrNetlnit() in usrNetwork.c, initially sets
the user name and password to those specified in the boot parameters.

285

VxWorks 5.3.1
Programmer’s Guide

File Permissions

For a VxWorks system to have access to a particular file on a host, permissions on
the host system must be set up so that the user name that VxWorks is using has
permission to read that file (and write it, if necessary). This means that it must have
permission to access all directories in the path, as well as the file itself.

The easiest way to check this is to log in to the host with the user name VxWorks
uses, and try to read or write the file in question. If you cannot do this, neither can
the VxWorks system.

Transparent Remote File Access with NFS

The I/0 driver nfsDrv, which provides NFS client support, uses the client routines
in the library nfsLib to access files on an NFS file server.

VxWorks also allows you to run an NFS server to export files to other systems. The
server task mountd allows other systems on the network to mount VxWorks file
systems (dosFs only); then the server task nfsd allows them to read and write to
those files. The VxWorks NFS server facilities are implemented in the following
libraries:

mountLib Mount Protocol library. Provides routines to manage exporting file
systems.

nfsdLib NFS server library. Provides routines to manage requests from remote
NFS clients.

The VxWorks NFS library routines are implemented using RPC. See the library
reference entries and 5.2.8 Remote Procedure Calls, p.278.

Allowing Remote File Access with NFS

On Windows, most networking packages that support NFS also supply a
mechanism for exporting files so that they are visible on the network. See your
Windows and networking software documentation for information on this facility.

To access files on UNIX, NFS clients mount file systems from NFS servers. On a
UNIX NFS server, the file /etc/exports specifies which of the server’s file systems
can be mounted by NFS clients. For example, if /etc/exports contains the following
line:

usr

then the file system /usr can be mounted by NFS clients such as VxWorks. If a file
system is not listed in this file, it cannot be mounted by other machines. Other

286

5
Network

optional fields in /etc/exports allow the exported file system to be restricted to
certain machines or users.

Creating VxWorks Network Devices that use NFS

Access to a remote NFS file system is established by mounting that file system
locally and creating an 1/0 device for it using the routine nfsMount():

nfsMount (" host"," hostFileSys"," localName")

Its arguments are:

host the host name of the NFS server where the file system resides
hostFileSys the name of the desired host file system or subdirectory
localName the local name to assign to the file system

For example, the following call mounts /usr of the host mars as /vwusr locally:
-> nfsMount "mars", "/usr", "/vwusr"

The host name mars must already be in VxWorks’s list of hosts (added with the
routine hostAdd()). VxWorks then creates a local 1/0 device /vwusr that refers to
the mounted file system. A reference on VxWorks to a file with the name
Ivwusr/fred/myfile refers to the file /usr/fred/myfile on the host mars as if it were
local to the VxWorks system.

If INCLUDE_NFS_MOUNT_ALL is defined in the VxWorks configuration file
configAll.h, VxWorks mounts all exported NFS file systems. Otherwise, the
network startup routine, usrNetlInit() in usrNetwork.c, tries to mount the file
system from which VxWorks was booted—as long as NFS is included in the
VxWorks configuration and the VxWorks boot file begins with a slash (/). For
example, if NFS is included and you boot config/ bspname/vxWorks, then VxWorks
attempts to mount /usr from the boot host with NFS.

Setting the User ID for Remote File Access with NFS

When making an NFS request to a host system, the NFS server expects more
information than the user’s name. NFS is built on top of Remote Procedure Call
(RPC) and uses a type of RPC authentication known as AUTH_UNIX. This
mechanism requires the user ID and a list of group IDs that the user belongs to.

These parameters can be set on VxWorks using nfsAuthUnixSet(). For example, to
set the user ID to 1000 and the group ID to 200 for the machine mars, use:

-> nfsAuthUnixSet "mars", 1000, 200, 0

287

VxWorks 5.3.1
Programmer’s Guide

The routine nfsAuthUnixPrompt() provides a more interactive way of setting the
NFS authentication parameters from the Tornado shell.

On UNIX systems, a user ID is specified in the file /etc/passwd. A list of groups that
a user belongs to is specified in the file /etc/group.

A default user ID and group ID is specified in the header file configAll.h by
defining the values of NFS_USER_ID (default user ID is 2001) and NFS_GROUP_ID
(default group ID is 100) respectively. The NFS authentication parameters are set
to these values at system startup. If NFS file access is unsuccessful, make sure that
NFS_USER_ID and NFS_GROUP_ID are correct.

Allowing Remote Access to VxWorks Files through NFS

To export a dosFs file system with NFS, carry out the following steps:

= Initialize a dosFs file system, with the option that makes it NFS-exportable.
» Register the file system for export, with a call to nfsExport().

To use the file system from another machine after you export it, you must also:
= Mount the remote VxWorks file system using local host facilities.

To include NFS server support in your VxWorks configuration, define the constant
INCLUDE_NFS_SERVER in configAll.h. If you wish, you can run a VxWorks
system with only NFS server support (and no client support) by including
INCLUDE_NFS_SERVER but not INCLUDE_NFS in configAll.h.

Initializing an NFS-Exportable File System

To export a dosFs file system with NFS, you must initialize that file system with the
DOS_OPT_EXPORT option (see 4.2.4 Volume Configuration, p.199 in this manual).
With this option, the dosFs initialization code creates some small additional in-
memory data structures; these structures make the file system exportable.

The following steps initialize a DOS file system called /export on a SCSI drive. You
can use any block device instead of SCSI; to use a RAM disk, see RAM Disk Drivers,
p.140. Your BSP can also support other suitable device drivers; see your BSP
documentation.

1. Initialize the block device containing your file system. For example, you can
use a SCSI drive as follows:
scsiAutoConfig (NULL);

pPhysDev = scsiPhysDevldGet (NULL, 1, 0);
pBIkDev = scsiBlkDevCreate (pPhysDev, 0, 0);

288

5
Network

Calling scsiAutoConfig() configures all SCSI devices connected to the default
system controller. (Real applications often use scsiPhysDevCreate() instead,
to specify an explicit configuration for particular devices.) The
scsiPhysDevldGet() call identifies the SCSI drive by specifying the SCSI
controller (NULL specifies the default controller), the bus ID (1), and the
Logical Unit Number (0). The call to scsiBlkDevCreate() initializes the data
structures to manage that particular drive.

2. Initialize the file system with the usual dosFs facilities, but also specify the

option DOS_OPT_EXPORT. If your NFS client is PC-based, it may also require
the DOS_OPT_LOWERCASE option. For example, if the device already has a
valid dosFs file system on it (see 4.2.6 Using an Already Initialized Disk, p.204 in
this manual), initialize it as follows:

dosFsDevInitOptionsSet (DOS_OPT_EXPORT);

dosFsDeviInit (“/export", pBlkDev, NULL);
Otherwise, specify a pointer to a DOS_VOL_CONFIG structure as the third
argument to dosFsDevlInit() (see the dosFsLib reference entry).

A NOTE: For NFS-exportable file systems, the device name must not end in a slash.

Exporting a File System through NFS

After you have an exportable file system, call nfsExport() to make it available to
NFS clients on your network. Then mount the file system from the remote NFS
client, using the facilities of that system. The following example shows how to
export the new dosFs file system from a VxWorks platform called vxTarget, and
how to mount it from a typical UNIX system.

1. After the file system (/fexport in this example) is initialized, the following
function call specifies it as a file system to be exported with NFS:

nfsExport (“/export"”, 0, FALSE, 0);

The first three arguments specify the name of the file system to export; the
VxWorks NFS export ID (0 means to assign one automatically); and whether
to export the file system as read-only. The last argument is a place-holder for
future extensions.

2. Tomount the file system from another machine, see the system documentation
for that machine. Specify the name of the VxWorks system that exports the file
system, and the name of the desired file system. You can also specify a different
name for the file system as seen on the NFS client.

A NOTE: On UNIX systems, you normally need root access to mount file systems.

289

VxWorks 5.3.1
Programmer’s Guide

For example, on a typical UNIX system, the following command (executed
with root privilege) mounts the /export file system from the VxWorks system
vxTarget, using the name /mnt for it on UNIX:

[etc/mount vxTarget:/export /mnt

Properties of NFS-Exported File Systems

Several global variables allow you to specify dosFs facilities related to NFS
support. Because these facilities use global variables, you can export previously
existing dosFs file systems without altering the existing configuration stored with
the file system data on disk.

However, because these are global variables, you must take care to avoid race
conditions if more than one task initializes dosFs file systems. If your application
initializes file systems for NFS on the fly, you may need mutual exclusion
surrounding these global variable settings and the corresponding file system
initialization.

You can specify a single user 1D, group ID, and mode (permissions) for all files
within a dosFs file system. To specify these values, define the following global
variables before initializing a dosFs file system with either dosFsDevlInit() or
dosFsMkfs():

dosFsUserld Numeric user ID. Default: 65534.
dosFsGroupld Numeric group ID. Default: 65534.

dosFsFileMode Numeric file access mode (that is, permissions with UNIX
encoding). Default: 511 (octal, 777).

These settings remain in effect for the file system until you reboot.

A WARNING: dosFsFileMode controls only how the file access mode is reported to
NFS clients; it does not override local access restrictions on the DOS file system. In
particular, if any file in an exported file system has DOS_ATTR_RDONLY set in its
file-attribute byte, no modifications to that file are permitted regardless of what
dosFsFileMode says.

You can also set the current date and time for the DOS file system using
dosFsDateSet() and dosFsTimeSet(). For a discussion of these routines and other
standard dosFs facilities, see 4.2 MS-DOS-Compatible File System: dosFs, p.191 in
this manual.

290

5
Network

Limitations of the VxWorks NFS Server

The VxWorks NFS server can export only dosFs file systems, which leads to the
following DOS limitations:

— File names in dosFs normally share the DOS limit of 8 characters with a three-
character extension. An optional dosFs feature allows (at the expense of DOS
compatibility) file names up to forty characters long. To enable this extension,
create the file system with the DOS_OPT_LONGNAMES option (defined in
dosFsLib.h).

— DOS file systems do not provide for permissions, user IDs, and group IDs on
individual files. You can provide a single user ID, a single group ID, and a
single set of permissions for all files on an entire DOS file system by defining
the global variables dosFsUserld, dosFsGroupld, and dosFsFileMode,
described in the reference entry for dosFsLib.

— Because the DOS file system does not provide file permissions, VxWorks does
not normally provide authentication services for NFS requests. To authenticate
incoming requests, write your own authentication routines and arrange to call
them when needed. See the reference entries for nfsdinit() and mountdlinit()
for information on authorization hooks.

5.3.4 Remote File Transfer Using TFTP

The Trivial File Transfer Protocol (TFTP) is implemented on top of the Internet
User Datagram Protocol (UDP). VxWorks provides both a TFTP clientand a TFTP
server. Typically the TFTP client side is used at boot time to download the
VxWorks from the boot host to the target. The VxWorks TFTP server can be used
to boot an X-Terminal from VxWorks or boot another VxWorks system from a local
disk.

Unlike FTP and RSH, TFTP requires no authentication; that is, the remote system
does not require an account or password. The TFTP server allows only publicly
readable files to be accessed. Files can be written only if they already exist and are
publicly writable.

Host TFTP Server

The TFTP server is typically started by the Internet daemon on the host. For added
security, some hosts (for example, Sun hosts) start the TFTP server with the secure
(-s) option enabled by default. If this option is specified, the server roots all TFTP
requests in the directory specified (for example, /tftpboot) to restrict access to the
host.

291

VxWorks 5.3.1
Programmer’s Guide

For example, if the secure option was set with -s /tftpboot, a TFTP request for the
file /vxBoot/vxWorks is satisfied by the file /tftpboot/vxBoot/vxWorks rather than
the expected file /vxBoot/vxWorks.

To disable the secure option on the TFTP server, edit /etc/inetd.conf and remove
the -s option from the tftpd entry.

VxWorks TFTP Server

The TFTP server daemon is initialized by default when INCLUDE_TFTP_SERVER
is defined in configAll.h. See the reference entry for tftpdLib.

VxWorks TFTP Client

Include the VxWorks TFTP client side by defining INCLUDE_TFTP_CLIENT in
configAll.h. To boot using TFTP, specify 0x80 in the boot flags parameters. To
transfer files from the TFTP host and the VxWorks client, two high-level interfaces
are provided, tftpXfer() and tftpCopy(). See the reference entry for tftpLib.

5.3.5 Remote Login from VxWorks to the Host: rlogin()

You can log in to a host system from a VxWorks terminal using rlogin().

For a Windows host system, VxWorks’s ability to remotely log in depends on your
version of Windows and the networking software you are using. See that
documentation for details.

For a UNIX host system, access permission must be granted to the VxWorks
system by entering its system name either in the .rhosts file (in your home
directory) or in the /etc/hosts.equiv file. For more information, see Allowing Remote
File Access with RSH, p.284.

5.3.6 Adding Gateways to a Network

The Internet protocols allow hosts on different but connected networks to
communicate. If a machine on one network sends a packet to a machine on another
network, then a gateway is sought that can forward the message from the sender’s
network to the destination network. If a system has interfaces to more than one
network, it can be a gateway between those networks. One of the primary
functions of IP (the lower-level protocol of TCP/IP) is to perform this routing and
forwarding among interconnected networks.

292

5
Network

Many systems have a routing daemon (routed) that exchanges routing
information with other systems to determine network connectivity. VXWorks,
however, has no routing daemon, and must instead be told explicitly about any
gateways it requires. Similarly, if a VxWorks system is a gateway, other systems
must be told about it explicitly, because VxWorks does not broadcast routing
information.

Adding a Route on Windows

Again, this procedure varies with your version of Windows and your networking
software package. See the documentation for your system for details.

Adding a Route on UNIX

A UNIX system can be told explicitly about a gateway in one of two ways: by
editing /etc/gateways or using the route command.

When the UNIX route daemon routed is started (usually at boot time), it reads a
static routing configuration from /etc/gateways. Each line in /etc/gateways
specifies a network gateway in the following format:

net destinationAddr gateway gatewayAddr metric n passive

where n is the hop count from the host system to the destination network (the
number of gateways between the host and the destination network) and “passive”
indicates the entry is to remain in the routing tables.

For example, consider a system on network 150. The following line in
/etc/gateways describes a gateway between networks 150 and 161, with an Internet
address 150.12.0.1 on network 150; a hop count (metric) of 1 specifies that the
gateway is a direct connection between the two networks:

net 161.27.0.0 gateway 150.12.0.1 metric 1 passive

After editing /etc/gateways, you must kill the route daemon and restart it, because
it only reads /etc/gateways when it starts. After the route daemon is running, it is
not aware of subsequent changes to the file.

You can also use the route command to add routing information explicitly:
route add destination-network gatewayAddr [metric]

For example, the following command configures the gateway in the same way as
did the previous example, which used the /etc/gateways file:

route add net 161.27.0.0 150.12.0.1 1

293

VxWorks 5.3.1
Programmer’s Guide

Note, however, that routes added with this manual method are lost the next time
the system boots.

You can confirm that a route is in the routing table by using the UNIX command
netstat -r.

Adding a Route on VxWorks

Figure 5-7

To add gateways to the VxWorks network routing tables, use routeAdd():
routeAdd (" destinationAddr"," gatewayAddr")

Both addresses can be specified either by dot notation or by the host names defined
by the routine hostAdd(). If destinationAddr is a subnet, you can use
routeNetAdd() instead.

For example, consider two VxWorks machines vx2 and vx3 (shown in Figure 5-7),
both interfaced to network 161. Suppose that vx3 is a gateway between networks
150 and 161 and that its Internet address on network 161 is 161.27.0.3.

Routing Example

Network 161 I I
161.27.0.2 161.27.0.3

1 1

VX2 VX3

I
150.12.0.1

Network 150 I I

150.12.0.2
1
hi

The following calls can then be made on vx2 to establish vx3 as a gateway to
network 150:

-> routeAdd ("150.12.0.0", "vx3");

294

5
Network

or:
-> routeAdd ("150.12.0.0", "161.27.0.3");

You can confirm that a route is in the routing table with the routeShow() routine.?
Other routing functions are available in the library routeLib.

The VxWorks network startup routine, usrNetInit() in usrNetwork.c,
automatically adds the gateway specified in the boot parameters (if any) to the
routing tables. In this case, the address specified in the gateway field (g =) is added
as the gateway to the network of the boot host.

5.3.7 Testing Network Connections

You can use the ping() utility from VxWorks to test whether a particular system is
accessible over the network. Like the UNIX command of the same name, ping()
sends one or more packets to another system and waits for a response. You can
identify the other system either by name or by its numeric Internet address. This is
useful for testing routing tables and host tables, or whether another machine is
responding to network requests.

The following example shows ping() output for an address that cannot be reached:

-> ping "150.12.0.1",1
no answer from 150.12.0.1
value = -1 = Oxffffffff = _end + Oxfff9lcaf

If the first argument does not have the form of a numeric Internet address, ping()
uses the host table to look it up, as in the following example:

-> ping "caspian”,1

caspian is alive

value = 0 = 0x0
The numeric argument specifies how many packets to expect back (typically, when
an address is reachable, that is also how many packets are sent). If you specify
more than one packet, ping() displays more elaborate output, including summary
statistics. For example, the following test sends packets to a remote network
address until it receives ten acknowledgments, and reports on the time it takes to
get replies:

-> ping "198.41.0.5",10

PING 198.41.0.5: 56 data bytes
64 bytes from 198.41.0.5: icmp_seq=0. time=176. ms

. This routine is not built into the Tornado shell. To use it from the Tornado shell, define
INCLUDE_NET_SHOW in your VxWorks configuration; see 8. Configuration in this
manual.

295

VxWorks 5.3.1
Programmer’s Guide

64 bytes from 198.41.0.5: icmp_seq=1. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=2. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=3. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=4. time=80. ms
64 bytes from 198.41.0.5: icmp_seq=5. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=6. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=7. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=8. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=9. time=64. ms

----198.41.0.5 PING Statistics----

10 packets transmitted, 10 packets received, 0% packet loss

round-trip (ms) min/avg/max = 64/76/176

value = 0 = 0x0
The report format matches the format used by the UNIX ping utility. Timings are
based on the system clock; its resolution may be too coarse to show any elapsed
time when communicating with targets on a local network.

Applications can use ping() periodically to test whether another network node is
available. To support this use, the ping() routine returns a STATUS value and
accepts a PING_OPT_SILENT flag as a bit in its third argument to suppress printed
output, as in the following code fragment:

)’: Check whether other system still there */
if (ping (partnerName, 1, PING_OPT_SILENT) == ERROR)

meDownShut(); /* clean up and exit */

}

You can set one other flag in the third ping() argument: PING_OPT_DONTROUTE
restricts ping() to hosts that are directly connected, without going through a
gateway.

5.3.8 Broadcast Addresses

Many physical networks support the notion of broadcasting a packet to all hosts on
the network. A special Internet broadcast address is interpreted by the network
subsystem to mean “all systems” when specified as the destination address of a
datagram message (UDP). This is shown in the demo program
src/demo/dg/dgTest.c.

Unfortunately, there is some ambiguity about what address is to be interpreted as
the broadcast address. The Internet specification now states that the broadcast
address is an Internet address with a host part of all ones. However, some older
systems use an Internet address with a host part of all zeros.

296

5
Network

Most newer systems, including VxWorks, accept either address on incoming
packets as being a broadcast packet. But when an application sends a broadcast
packet, it must use the correct broadcast address for its system.

VxWorks normally uses a host part of all ones as the broadcast address. Thus a
datagram sent to Internet address 150.255.255.255 (0x5affffff) is broadcast to all
systems on network 150. However, to allow compatibility with other systems,
VxWorks allows the broadcast address to be reassigned for each network interface
by calling the routine ifBroadcastSet(). For more information, see the reference
entry for ifBroadcastSet().

5.3.9 Using Subnets

Figure 5-8

An Internet address consists of a network address portion and a host address
portion. As described previously, there are different classes of Internet addresses
in which different parts of the 32-bit address are assigned to each portion. This
provides a great deal of flexibility in network addressing. Even so, in some
environments network addresses are a scarce resource—an organization can be
limited to a certain number of network addresses by a higher authority.

A single network address can be subdivided into multiple sub-networks using a
technique called subnet addressing. This technique involves extending the network
portion of the addresses used on a particular set of physical networks. The
interpretation of the Internet address is altered to include more bits in the network
portion and fewer in host portion. For example, if a network uses a type B address
(131.1.0.0), the third byte can be used for the subnet and the fourth byte for the host
address, as shown in Figure 5-8. Internal to the subnet, the Internet address is
interpreted as 131.1.7 for the network portion and 81 for the host portion.

Subnetting

131.1.7.81

I N —

e N

network subnet host

The specification of which bits are to be interpreted as the network address is
called the net mask. A net mask is a 32-bit value with 1’s in all bit positions to be
interpreted as the network portion. In the example in Figure 5-8, the netmask is
Oxffffff00. In VxWorks, use ifMaskSet() to specify the net mask for a particular
network interface. For more information, see the reference entry for ifMaskSet().

297

VxWorks 5.3.1
Programmer’s Guide

Specify a net mask during booting if you must correctly access the host from which
you are booting. This can be done by appending :mask to the Internet address
specifications for the Ethernet and/or backplane interfaces in the boot parameters,
where mask is the desired net mask in hexadecimal. For example, when entering
boot parameters interactively, it might look as follows:

inet on ethernet (e) 131.1.7.81:AfffffO0

inet on backplane (b) : 131.1.81.1:ffffff00
When specifying the boot parameters in a boot string, the same Internet address
specification looks as follows:

e=131.1.7.81:ffffff00 b=131.1.81.1:ffffffOO

5.3.10 Configuration of Mbufs

You can control the number of buffers (mbufs) that can be assigned to the Internet
software by modifying the structures mbufConfig and clusterConfig in
usrNetwork.c (in src/config). These structures allow you to specify the size and
location of a memory pool from which the network buffers are allocated. The
following structure is used to configure mbufs or mbuf clusters:

typedef struct

int initialAlloc;

int incrementAlloc;
int maxAlloc;

int memPartition;

int memPartitionSize;
} MBUF_CONFIG;

The fields in this structure are:
initial Alloc the number of mbufs or clusters to allocate at boot time.

incrementAlloc the number of mbufs or clusters that are allocated, each time
an “out of buffers” condition exits. After these buffers are
allocated, they remain permanently in the mbufs pool.

maxAlloc the maximum number of mbufs or clusters that can be
allocated.
memPartition the default is the system memory pool, which is indicated by

passing the value NULL. If an address is specified, the system
attempts to create a memory partition using this address. If
the partition cannot be created, the root task suspends itself
and prints an error message on the console.

298

A

5
Network

memPartitionSize
ignored when memPartition is NULL. If memPartition is not
NULL, memPartitionSize specifies the size of the memory
pool to be used for mbufs or clusters. It must be large enough
to allocate the number of buffers specified in initial Alloc. If
this field is not large enough to accommodate the number of
buffers specified in initial Alloc, the root task suspends itself
and prints an error message on the console.

Changes to the configuration of mbufs or clusters reflects the network traffic
requirements of your system. If your network needs are small and your
application performs a lot of memory allocation, you can decrease the default
values to recover the additional memory. If your network needs are larger, the
default values can be increased to help avoid lost packets or increase network
performance.

NOTE: Perform the configuration of mbufs and mbuf clusters only after some data
about the behavior of the system is collected and the desired behavior determined.
The defines for the default configuration are in the file h/net/mbuf.h.

Table 5-11 Network Procedures Summary
Function On UNIX On VxWorks
Associate Use ifconfig in /etc/rc.local: Call ifAddrSet():
Internet ifconfig In0 150.12.0.1 -> fAddrSet "In0", "150.12.0.2"
addresses with ~ or:
network ifconfig INO host
interfaces.
Associate Add address-name pairs to /etc/hosts: Call hostAdd():
Internet 150.12.0.1 host -> hostAdd "host", "150.12.0.1"
addresses with ~ or: -> hostAdd "vw1", "150.12.0.2"
system names. 150.12.0.2 wvwl sonny -> hostAdd "sonny", "150.12.0.2"
Examine host Look at /etc/hosts. Call hostShow() if INCLUDE_NET_SHOW is
names. defined in your VxWorks configuration.
Transparent Add remote system names to Create network devices to remote systems using
remote file /etc/hosts.equiv or /userhome/.rhosts: RSH:
access with vwl -> netDevCreate "host:", "host", 0
RSH. w2 Set user name using iam():

-> jam "fred", 0
Access files with created device name:
-> copy < /host:/usr/myfile

299

VxWorks 5.3.1
Programmer’s Guide

Table 5-11 Network Procedures Summary (Continued)
Function On UNIX On VxWorks
Transparent No action necessary. Create network devices to remote systems using
remote file FTP:
access with -> netDevCreate "host:", "host", 1
FTP. Set user name and password using iam():
-> jam "fred", "flintstone"
Access files with created device name:
-> copy < /host:/usr/fred/myfile
Transparent Add the names of mountable file Create NFS device:
remote file systems and a list of groups that have -> nfsMount "host", "/usr", "/hostUsr"
access with access to them in /etc/exports. Set NFS authentication with nfsAuthUnixSet()
NFS. or nfsAuthUnixPrompt():
-> nfsAuthUnixSet "host", uid, gid, 0
Access files with mounted name:
-> copy < /hostUsr/fred/myfile
Exporting Use mount (as root): Initialize the file system using
dosFs file fetc/mount vw:/export /mnt DOS_OPT_EXPORT (0x8):
system with -> dosFsDevInitOptionsSet (0x8)
NFS. -> dosFsDevinit "/fexport”, pBlkDev, 0
Register with NFS server for export:
-> nfsExport "/export”, 0, 0, 0
Remote login Add remote system names to Set the user name with iam():
from VxWorks /etc/hosts.equiv or /userhome/.rhosts: -> jam (“fred")
to host with vwl Use rlogin():
rlogin(). -> rlogin "host"
Add gateways Add gateway to /etc/gateways and Call routeAdd():
to a network. restart routed: -> routeAdd "150.12.0.0", "vx3"
net 161.27.0.0 gateway \ -> routeAdd "150.12.0.0", "161.27.0.3"
150.12.0.3 metric 1 passive
or use route:
route add 161.27.0.0
150.12.0.3
Examine Use netstat: Call routeShow() if INCLUDE_NET_SHOW is

routing tables.

Examine
network
interfaces.

%netstat -r

Use ifconfig:
%ifconfig In0

defined in your VxWorks configuration.

Call ifShow() if INCLUDE_NET_SHOW is
defined in your VxWorks configuration:
-> ifShow ("In0")

300

5
Network

5.4 Shared-Memory Networks

Figure 5-9

The VxWorks network subsystem has many layers of protocols. At the bottom
layer are the network interface drivers; their job is to transmit and receive packets
on the physical network medium. In addition to supplying drivers for traditional
network media such as Ethernet, VxWorks also supplies a shared-memory network
driver, sm, which provides communication over a backplane bus.

The advantage of a shared-memory network driver compatible with the rest of the
network subsystem is that all higher-level protocols are immediately available
over the backplane, as they are over Ethernet. Facilities like socket
communications, remote login, remote file access, and NFS are all available to and
from any processor on the backplane, simultaneously. Use of the network facilities
over the backplane is indistinguishable from their use over any other medium.

A multiprocessor backplane bus becomes an Internet network of its own. Each
shared-memory network has its own network/subnet number. As usual, each
processor on the shared-memory network has a unique Internet address.

NOTE: This is different if you are using proxy ARP; see 5.5 Proxy ARP, p.316 for
additional information.

In the example shown in Figure 5-9, two CPUs are on the backplane. The shared-
memory network’s Internet address is 161.27.0.0. Each CPU on the shared-memory
network has a unique Internet address, 161.27.0.1 for vx1 and 161.27.0.2 for vx2.

Shared-Memory Network

vx1 VX2
161.27.0.1 161.27.0.2
I I 161.27.0.0
Backplane

The routing capabilities of the VxWorks Internet protocols allow the processors on
the shared-memory network to reach systems on other networks over a gateway
processor on the shared-memory network. The gateway processor has connections
to both the shared-memory network and an external network, typically an
Ethernet network. This makes all levels of network communications available

301

VxWorks 5.3.1
Programmer’s Guide

between any processor on the shared-memory network and any other host or
target system on the external network.

Finally, the low-level packet passing mechanism of the shared-memory network
driver is also available directly. This allows alternative protocols to be run over the
shared-memory network in parallel with the standard ones.

The VxWorks shared-memory network driver uses the following techniques to
send network packets from one processor on the backplane to another:

= Packets are transferred across the backplane through a pool of shared memory
that can be accessed by all processors on the backplane.

= Access to the shared-memory pool is interlocked by use of a test-and-set
instruction.

= Processors can either poll the shared-memory data structures for input packets
periodically, or be notified of input packets by interrupts.

The shared-memory network is configured by constants in the header file config.h
and by parameters specified to the VxWorks boot ROMs. The following sections
give the details of the backplane network operation and configuration.

5.4.1 The Backplane Shared-Memory Pool

The basis of the VxWorks shared-memory network is the shared-memory pool. This
is a contiguous block of memory that must be accessible to all processors on the
backplane. Typically this memory is either part of one of the processors’ on-board,
dual-ported memory, or on a separate memory board.

Backplane Processor Numbers

The processors on the backplane are each assigned a unique backplane processor
number starting with 0. The assignment of numbers is arbitrary, except for
processor 0, which by convention is the shared-memory network master, described
in the next section.

The processor numbers are established by the parameters supplied to the boot
ROMSs when the system is booted. These parameters can be burned into ROM, set
in the processor’s NVRAM (if available), or entered interactively.

302

5
Network

The Shared-Memory Network Master: Processor 0

One of the processors on the backplane is the shared-memory network master. The
shared-memory network master has the following responsibilities:

= Initializing the shared-memory pool and the shared-memory anchor.
= Maintaining the shared-memory heartbeat.
= Functioning (usually) as the gateway to the external (Ethernet) network.

= Allocating the shared-memory pool itself from its dual-ported memory (in
some configurations).

No processor can use the shared-memory network until the master has initialized
it. However, the master processor is not involved in the actual transmission of
packets on the backplane between other processors. After the shared-memory pool
is initialized, the processors, including the master, are all peers.

The configuration module src/config/usrNetwork.c is set up to establish processor
0 as the master. The master usually boots from the external (Ethernet) network
directly. The master has two Internet addresses in the system: its Internet address
on the Ethernet, and its address on the shared-memory network. See the reference
entry for usrConfig.

The other processors on the backplane boot indirectly over the shared-memory
network, using the master as the gateway. They have only an Internet address on
the shared-memory network. These processors specify the shared-memory
network interface, sm, as the boot device in the boot parameters.

The Shared-Memory Anchor

In various configurations, the shared-memory pool is located at different locations.
In many situations, it is desirable to allocate the shared memory at run-time, rather
than fixing its location at the time the system is built.

All processors on the shared-memory network must be able to locate the shared-
memory pool, even when its location is not known at the time the system is built.
The shared-memory anchor serves as a common point of reference for all
processors. The anchor is a small data structure placed at a fixed location when the
system is built. This is usually either in low memory of the dual-ported memory of
one of the processors, or at some fixed address on the separate memory board.

The anchor contains a pointer to the actual shared-memory pool. This is set up by
the master when the shared-memory network is initialized. The anchor’s

303

VxWorks 5.3.1
Programmer’s Guide

“pointer” to the shared-memory pool is actually an offset from the anchor itself;
thus the anchor and pool must be in the same address space so that this offset is
the same for all processors.

The backplane anchor address is established in one of two ways: either by
parameters in config.h, or by boot parameters. For the shared-memory network
master, the anchor address is established in the master’s configuration header file
config.h at the time the system image is built. Set the value of
SM_ANCHOR_ADRS, in config.h of the master, to the address of the anchor as seen
by the master.

For the other processors on the shared-memory network, a default anchor address
can be established in the same way, by the setting of SM_ANCHOR_ADRS in
config.h. However, this requires burning boot ROMs with that configuration,
because the other processors must boot from the shared-memory network to begin
with. For this reason, the anchor address can also be specified in the boot
parameters if the shared-memory network is the boot device. This is done by
appending the address to the shared-memory network boot device code sm,
separated by an equal sign (=). Thus the following boot parameter establishes the
anchor address at 0x800000:

boot device: sm=0x800000
In this case, this is the address of the anchor as seen by the processor being booted.

The Shared-Memory Heartbeat

The processors on the shared-memory network cannot communicate over that
network until the shared-memory pool initialization is finished. To let the other
processors know when the backplane is “alive,” the master maintains a shared-
memory heartbeat. This heartbeat is a counter that is incremented by the master once
per second. Processors on the shared-memory network determine that the shared-
memory network is alive by watching the heartbeat for a few seconds.

The shared-memory heartbeat is located in the first 4-byte word of the shared-
memory packet header. The offset of the shared-memory packet header is the fifth
4-byte word in the anchor, as shown in Figure 5-10.

Thus, if the anchor were located at 0x800000:
[VxWorks Boot]: d 0x800000

800000: 8765 4321 0000 0001 0000 0000 0000 002c *.eCl..........., *
800010: 0000 0170 0000 0000 0000 0000 0000 0000 *...p............ *
800020: 0000 0000 0000 0000 0000 0000 0000 0000 *................ *

304

5

Network
Figure 5-10 Shared-Memory Heartbeat
1. ready value Shared-Memory
2. Anchor
3.
4, .
5. Offset for smPktHeader
heartbeat smPktHeader
(anchor + offset)

The offset to the shared-memory packet header is 0x170. To view the shared-
memory packet header, display 0x800170:

[VxWorks Boot]: d 0x800170

800170: 0000 0050 0000 0000 0000 Obfc 0000 0350 *...P........... p*
In this example, the value of the shared-memory heartbeat is 0x50. Display this
location again to ensure that the heartbeat is alive; if its value has changed, the
network is alive.

Shared Memory Location

As mentioned previously, the shared memory can either be put at a fixed location
at the time the system is built, or be allocated dynamically at run-time. The location
is determined by the value of SM_MEM_ADRS in config.h. This constant can be
specified as follows:

NONE (-1) means that the shared-memory pool is to be dynamically allocated
from the master’s on-board dual-ported memory.

An absolute address that is different from the anchor address
SM_ANCHOR_ADRS means that the shared-memory pool starts at that fixed
address.

For convenience, an absolute address that is the same as the anchor address
means the shared-memory pool starts immediately after the anchor data
structure; the size of that structure need not be known in advance.

305

VxWorks 5.3.1
Programmer’s Guide

Shared Memory Size

The size of the shared-memory pool is determined by the value of SM_MEM_SIZE
in the header file config.h.

The size required for the shared-memory pool depends on the number of
processors and the expected traffic. There is less than 2KB of overhead for data
structures. After that, the shared-memory pool is divided into 2KB packets. Thus,
the maximum number of packets that can be outstanding on the backplane
network is (poolsize — 2KB) / 2KB. A reasonable minimum is 64KB. A configuration
with a large number of processors on one backplane and many simultaneous
connections can require as much as 512KB. Having too small a pool slows down
communications.

On-Board and Off-Board Options

The config.h files delivered with VxWorks contain a conditional compilation that
makes it easy to select a pair of typical configurations. The constant
SM_OFF_BOARD can be defined TRUE to select a typical off-board shared-memory
pool, or FALSE to select a typical on-board shared-memory pool.

A typical off-board configuration establishes the backplane anchor and pool to be
located at an absolute address of 0x800000 on a separate memory board with a size
of 512KB.

The on-board configuration establishes the shared-memory anchor at a low address
in the master processor’s dual-ported memory. The shared-memory pool is
configured to be malloc’ed from the master’s own memory at run time. The size of
the pool allocated is set to 64KB.

These configurations are provided as examples; change them to suit your
configuration.

Additional configuring may be required to make the shared memory non-
cacheable, because the shared-memory pool is accessed by all processors on the
backplane. By default, boards with an MMU have the MMU turned on. With the
MMU on, memory that is off-board must be made non-cacheable. This is done
using the sysPhysMemDesc|] table in sysLib.c. The VME address space used for
the shared-memory pool must have a virtual-to-physical mapping in this data
structure, as well as mark the memory as non-cacheable (done by default). For the
MC680x0 family of processors, virtual addresses must equal physical addresses.
For the 68030, if the MMU is off, caching must be turned off globally; see the

306

5
Network

reference entry for cacheLib. Note that the default for all BSPs is to have their VME
bus access set to non-cacheable in sysPhysMemDesc[]. See 7.3 Virtual Memory
Configuration, p.407 in this manual for additional information.

Test-and-Set to Shared Memory

Unless some form of mutual exclusion is provided, multiple processors can
simultaneously access certain critical data structures of the shared-memory pool
and cause fatal errors. The VxWorks shared-memory network uses an indivisible
test-and-set instruction to obtain exclusive use of a shared-memory data structure.
This translates into a read-modify-write (RMW) cycle on the backplane bus.

Itis important that the selected shared memory support the RMW cycle on the bus
and guarantee the indivisibility of such cycles. This is especially problematic if the
memory is dual-ported, as the memory must then also lock out one port during a
RMW cycle on the other.

Some processors do not support RMW indivisibly in hardware, but do have
software hooks to allow this. For example, some processor boards have a flag that
can be set to prevent the board from releasing the backplane bus, after it is
acquired, until that flag is cleared. These techniques can be implemented in the
system-dependent library sysLib.c for the processor, in the routine sysBusTas().
The shared-memory network driver calls this routine to effect the mutual
exclusion on shared-memory data structures.

A NOTE: Define the constant SM_TAS_TYPE in configAll.h to either SM_TAS_SOFT
or SM_TAS_HARD. If even one processor on the backplane lacks hardware test and
set, all processors in the backplane must use the software test and set
(SM_TAS_SOFT).

5.4.2 Interprocessor Interrupts

Each processor on the backplane has a single input queue of packets sent to it from
other processors. There are three methods processors use to determine when to
examine their input queues: polling, bus interrupts, and mailbox interrupts.

When using polling, the processor examines its input queue periodically. When

using interrupts, the processor receives an interrupt from the sending processor
when its input queue has packets. Of course, interrupt-driven communication is
much more efficient than polling.

307

Table 5-12

VxWorks 5.3.1
Programmer’s Guide

Most backplane buses have a limited number of bus-interrupt lines available on
the backplane (for example, VMEbus has seven). A processor can use one of these
interrupt lines as its input interrupt. However, each processor must have its own
interrupt line. Furthermore, not all processor boards are capable of generating bus
interrupts. Thus, bus interrupts are difficult to use.

A much better interrupt mechanism is mailbox interrupts, also called location
monitors because they monitor the access to specific memory locations. A mailbox
interrupt is a bus address that, when written to or read from, causes a specific
interrupt on the processor board. Each board can be set, with hardware jumpers or
software registers, to use a different address for its mailbox interrupt.

To generate a mailbox interrupt, a processor writes to that location. There is
effectively no limit to the number of processors that can use mailbox interrupts,
because each processor takes up only a single address on the bus. Most modern
processor boards include some kind of mailbox interrupt.

Each processor must tell the other processors what method to use to notify it when
its input queue has packets. In the shared-memory data structures, each processor
enters its interrupt type and up to three parameters about that type. This
information is used by the shared-memory network driver of the other processors
when sending packets to that processor.

The interrupt type and parameters for each processor are specified in config.h by
the constants SM_INT_TYPE and SM_INT_ARGN. The possible values of
SM_INT_TYPE and the corresponding parameters are defined in the header file
smNetLib.h. Table 5-12 summarizes interrupt types and parameters.

Backplane Interrupt Types

Type Arg 1 Arg 2 Arg 3 Description
SM_INT_NONE - - - Polling
SM_INT_BUS level vector - Bus interrupt

SM_INT_MAILBOX 1 address space address value 1-byte write mailbox
SM_INT_MAILBOX 2 address space address value 2-byte write mailbox

SM_INT_MAILBOX_4 address space address value 4-byte write mailbox

SM_INT_MAILBOX_R1 addressspace address - 1-byte read mailbox
SM_INT_MAILBOX_R2 addressspace address - 2-byte read mailbox
SM_INT_MAILBOX_R4 addressspace address - 4-byte read mailbox

308

5
Network

5.4.3 Sequential Addressing

Figure 5-11

Sequential addressing is a method of addressing a target on the network with
respect to its location on the backplane. Targets are addressed in sequential
ascending order; the master has the lowest address, as shown in Figure 5-11.

Sequential Addressing

CPUO CPU 1 CPU 2

150.12.17.1 150.12.17.2 150.12.17.3

(Shared-Memory Network)

smO

With sequential addressing, a target on the shared-memory network can self-
configure its IP address. Only the master must know an IP address (the starting
address). All other targets on the network determine their IP address by adding the
starting IP address to the local target’s processor number.

Sequential addressing provides a more tightly coupled environment for the
shared-memory network. Because a target can determine its own Internet address
as well as the Internet addresses of all other targets on the shared-memory
network, hardware-to-IP translation (ARP) is unnecessary over the VxWorks
shared-memory network, and is therefore eliminated.

When setting up a shared-memory network, allocate a sequential block of valid IP
addresses to a shared-memory network. The master for this network is assigned
the lowest address in this block. When the shared-memory network driver is
initialized by the master (with smNetlInit()), the starting IP address is passed in as
a parameter and is stored in the shared-memory packet header.

Each target sets its interface address with ifAddrSet(). This routine checks that the
address to which the interface is being set is the expected address for its location
on the backplane, based on the processor number from the boot parameters. If any
other address is specified, the operation fails. To determine the starting address on
an active shared-memory network, use smNetShow().4

. This routine is not built in to the Tornado shell. To use it from the Tornado shell, define

INCLUDE_SHOW_ROUTINES in your VxWorks configuration; see 8. Configuration.

309

VxWorks 5.3.1
Programmer’s Guide

In the following example, the master’s IP address is 150.12.17.1.

-> smNetShow
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

Anchor Local Addr: 0x800000, SOFT TAS
Sequential addressing enabled. Master address: 150.12.17.1
heartbeat = 453, header at 0x800170, free pkts = 235.

cpu int type argl arg2 arg3 queued pkts
0 mbox-1 ox2d 0x803f 0x10 0
1 mbox-1 0x2d 0x813f 0x10 0
input packets = 366 output packets = 376

input errors =0 output errors =1

collisions =0

With sequential addressing, when booting a slave, the backplane IP address and
gateway IP boot parameters are no longer necessary. The default gateway address
is the address of the master. Another address can be specified if this is not the
desired configuration.

[VxWorks Boot]: p

boot device : sm=0x800000

processor number : 1

file name . [folk/fred/wind/target/config/ bspname/vxWorks
host inet (h) : 150.12.1.159

user (u) . fred

flags (f) : 0x0

[VxWorks Boot] : @

boot device : sm=0x800000

processor number : 1

file name . [folk/fred/wind/target/config/ bspname/vxWorks
host inet (h) : 150.12.1.159

user (u) . fred

flags (f) : 0x0

Backplane anchor at 0x800000... Attaching network interface smo...

done.

Backplane inet address: 150.12.17.2
Subnet Mask: Oxffffff0O

Gateway inet address: 150.12.17.1
Attaching network interface 100... done.
Loading... 364512 + 27976 + 20128
Starting at 0x1000...

Sequential addressing is enabled when INCLUDE_SM_SEQ_ADDR is defined in
configAll.h.

310

5
Network

5.4.4 Configuring the Host

For UNIX, configuring the host to support the shared-memory network is done by
using the procedures outlined earlier in this chapter for non-shared-memory
networks. In particular, a shared-memory network requires that:

= All shared-memory network host names and addresses must be entered in
/etc/hosts.

= All shared-memory network host names must be entered in .rhosts in your
home directory or in /etc/hosts.equiv (only if you are using RSH).

= Agateway entry must specify the master’s Internet address on the Ethernet as
the gateway to the shared-memory network. (The gateway entry is not needed
if you are using proxy ARP; for more information see 5.5 Proxy ARP, p.316.)

For Windows hosts, the steps required to configure the host are determined by
your version of Windows and the networking software you are using. See that
documentation for details.

5.4.5 Example Configuration

This section illustrates the foregoing discussion with an example of a simple
shared-memory network. The configuration consists of a single host and two
target processors on a single backplane. In addition to the two processors, the
backplane also has a separate memory board for the shared-memory pool, and an
Ethernet controller board. The additional memory board is not essential, but
makes for a configuration that is easier to describe.

The configuration shown in Figure 5-12 has two networks: the Ethernet and the
shared-memory network. The Ethernet is assigned network number 150, and the
shared-memory network is assigned 161. The host is h1, and is assigned the
Internet address 150.12.0.1.

The master is vx1, and functions as the gateway between the Ethernet and shared-
memory networks. It therefore has two Internet addresses: 150.12.0.2 on the
Ethernet network and 161.27.0.1 on the shared-memory network.

The other backplane processor is vx2; it is assigned the shared-memory network
address 161.27.0.2. It has no address on the Ethernet because it is not, in fact, on the
Ethernet. However, it can communicate with h1 over the shared-memory network,
using vx1 as a gateway. Of course, gateway use is handled by the Internet protocol
and is completely transparent to the user.

The example network address assignments are shown in Table 5-13.

311

Figure 5-12

Table 5-13

VxWorks 5.3.1
Programmer’s Guide

Example Shared-Memory Network

hl
host
I
150.12.0.1
Ethernet |
|
150.12.0.2
VX2 vx1
sm master
& gateway
[[
161.27.0.2 161.27.0.1
| |

Shared-Memory
Network

Network Address Assignments

150.12.0.0

161.27.0.0

Name Inet on Ethernet Inet on Backplane
hl 150.12.0.1 -

vx1 150.12.0.2 161.27.0.1
VX2 - 161.27.0.2

To configure the UNIX system for our example, the /etc/hosts file must contain the
Internet address and name of each system. Note that the backplane master has two
entries. The second entry, vx1.sm, is not actually necessary, because the host
system never accesses that system with that address—but it is useful to include it
in the file to ensure that the address is not used for some other purpose.

The entries in /etc/hosts are as follows:

150.12.0.1 hi
150.12.0.2 wx1
161.27.0.1 wvxl.sm
161.27.0.2 wvx2

312

Table 5-14

5
Network

To allow remote access from the target systems to the UNIX host, the .rhosts file in
your home directory, or the file /etc/hosts.equiv, must contain the target systems’
names:

vx1
VX2

To inform the UNIX system of the existence of the Ethernet-to-shared-memory
network gateway, make sure the following line is in the file /etc/gateways at the
time the route daemon routed is started.

net 161.27.0.0 gateway 150.12.0.2 metric 1 passive

Alternatively, you can add the route manually (effective until the next reboot) with
the following UNIX command:

%route add net 161.27.0.0 150.12.0.2 1
The target systems are configured in part by the parameters shown in Table 5-14.

Parameters in config.h

Parameter Value Comment

SM_ANCHOR_ADRS 0x800000

SM_MEM_ADRS 0x800000

SM_MEM_SIZE 0x80000

SM_INT_TYPE SM_INT_MAILBOX_1

SM_INT_ARG1 VME_AM_SUP_SHORT _IO

SM_INT_ARG2 (0xc000|(sysProcNum *2))

SM_INT_ARG3 0

Address of anchor as seen by vx1.

Address of shared-memory pool
as seen by vx1.

Size of shared-memory pool, in
bytes.

Interrupt targets with 1-byte write
mailbox.

Mailbox in short 1/0 space.

Mailbox at:
0xc000 for vx1
0xc002 for vx2

Write 0 value to mailbox.

The backplane master, vx1, has the following boot parameters:

boot device In

processor number :0

host namet :hl

file name : lusr/wind/target/config/lbspname/vxWorks

inet on ethernet (e) :150.12.0.2
inet on backplane (b) :161.27.0.1

313

VxWorks 5.3.1

Programmer’s Guide

host inet (h) :150.12.0.1
gateway inet (g)

user (u) : fred

ftp password (pw) (blank=use rsh) :
flags (f) :0

A NOTE: For more information on boot devices, see the Tornado User’s Guide: Getting
Started. To determine which boot device you should use, see your BSP
documentation.

The other target, vx2, has the following boot parameters:

boot device : sSm=0x800000

processor number 1

host name :hl

file name : lusriwind/target/config/bspname/vxWorks

inet on ethernet () :

inet on backplane (b) :161.27.0.2
host inet (h) :150.12.0.1
gateway inet (g) :161.27.0.1
user (u) : fred

ftp password (pw) (blank=use rsh)t:
flags (f) 10

The parameters inet on backplane (b) and gateway inet (g) are optional with
sequential addressing.

5.4.6 Troubleshooting

Getting a shared-memory network configured for the first time can be tricky. If you
have trouble, here are a few troubleshooting procedures you can use. Take one step
atatime.

1.

314

To begin with, boot a single processor in the backplane without any additional
memory or processor cards. Omit the inet on backplane parameter to prevent
the processor from trying to initialize the shared-memory network.

Now power off and add the memory board, if you are using one. Power on and
boot the system again. Using the VxWorks boot ROM commands for display
memory (d) and modify memory (m), verify that you can access the shared
memory at the address you expect, with the size you expect.

Next, reboot the system, filling in the inet on backplane parameter. This
initializes the shared-memory network. The following message appears
during the reboot:

Backplane anchor at anchor-addrs...Attaching network interface sm0...done.

5
Network

4. When VxWorks is up, you can display the state of the shared-memory network
with the smNetShow() routine,? as follows:
-> smNetShow ["interface"] [[1]
value = 0 = 0x0
The interface parameter is sm0 by default. Normally, smNetShow() displays
cumulative activity statistics to the standard output device; specifying 1 (one)
as the second argument resets totals to zero.

5. Now power off and add the second processor board. Remember that the
second processor must not be configured to be the system controller board.
Power on and stop the second processor from booting by typing any key to the
boot ROM program. Boot the first processor as you did before.

6. If you have trouble booting the first processor with the second processor
plugged in, you have some hardware conflict. Check that only the first
processor board is the system controller. Check that there are no conflicts in the
position of the various boards’ memory addresses.

7. With the d and m boot ROM commands, verify that you can see the shared
memory from the second processor. This is either the memory of the separate
memory board (if you are using the off-board configuration) or the dual-
ported memory of the first processor (if you are using the on-board
configuration).

8. Using the d command on the second processor, look for the shared-memory
anchor. The anchor begins with the ready value of 0x8765 (see Figure 5-10).
You can also look for the shared-memory heartbeat; see The Shared-Memory
Heartbeat, p.304.

9. When you have found the anchor from the second processor, enter the boot
parameter for the boot device with that address as the anchor address:

boot device: sm=0x800000
Enter the other boot parameters and try booting the second processor.

10. If the second processor does not boot, you can use smNetShow() on the first
processor to see if the second processor is attaching correctly to the shared-
memory network. If not, then you have probably specified the anchor address
incorrectly on the second processor. If the second processor is attached, then
the problem is more likely to be with the gateway or with the host system
configuration.

5. This routine is not built in to the Tornado shell. To use it from the Tornado shell, define
INCLUDE_SHOW_ROUTINES in your VxWorks configuration; see 8. Configuration.

315

VxWorks 5.3.1
Programmer’s Guide

11. You can use host system utilities, such as arp, netstat, etherfind, and ping, to
study the state of the network from the host side; see the Tornado User’s Guide:
Getting Started.

12. If all else fails, call your technical support organization.

5.5 Proxy ARP

Proxy ARP provides transparent network access by using the Address Resolution
Protocol (ARP) to make distinct networks appear as one logical network (that is,
the networks share the same address space). The proxy ARP scheme implemented
in VxWorks provides an alternative to the use of explicit subnets for accessing the
shared-memory network. See 5.4 Shared-Memory Networks, p.301. ®

Previously, the shared-memory network (backplane) had to be partitioned as a
separate subnet, and routes to that subnet had to be added to each host that
required access to the shared-memory network. Each shared-memory network
took up an individual subnet number; therefore, if a large number of shared-
memory networks were present on a network, precious subnet numbers were
rapidly consumed. However, with proxy ARP, the shared-memory network is the
same subnet/network as the Ethernet; therefore, subnet numbers are not assigned.

If the shared-memory network is attached to a large network with many networks
and subnets, network configuration becomes difficult. Proxy ARP simplifies
network configuration because there is only one network to deal with and
additional configuration on the host is unnecessary.

5.5.1 ARP Introduction

ARP is used to resolve a host’s IP address into a hardware address. This is done by
broadcasting an ARP request on the physical medium (typically Ethernet). The

6. Proxy ARP is described in Request For Comments (RFC) 925 “Multi LAN Address Resolu-
tion,” and an implementation is discussed in RFC 1027 “Using ARP to Implement Trans-
parent Subnet Gateways.” The ARP protocol is described in RFC 826 “Ethernet Address
Resolution Protocol: Or converting network protocol addresses to 48-bit Ethernet address
for transmission on Ethernet hardware.” This implementation is based on RFC 925;
however, it is a limited subset of that proposal.

316

5
Network

destination host sees the request and recognizes the destination IP address as its
own. It then sends a reply with its hardware address.

In the example in Figure 5-13, host h1 wants to communicate with host h4. It needs
h4’s hardware address, so it broadcasts an ARP request. Host h4 sees the ARP
request and replies with its hardware address. h1 records h4’s IP-to-hardware
mapping and proceeds to communicate with it.

Figure 5-13 ARP Example

hl h2 h3 h4

|
I I I I
161.27.0.1 161.27.0.2 161.27.0.3 161.27.0.4

L\ | | |
ARP BROADCAST: Who is 161.27.0.4?

hl h2 h3 h4

|

I I I'1

161.27.0.1 161.27.0.2 161.27.0.3 161.27.0.4
L\ | | /1

ARP REPLY: 161.27.0.4 is 8:0:52:9:87:3/

For a host to communicate with another host on a different subnet or network (as
indicated by the IP addresses and the subnet mask), it must use a gateway. In
Figure 5-14, vx3 acts as a gateway between Network A and Network B. Each host
must have a routing entry for the gateway in its routing table. The routing table for
vx1 to communicate with Network B includes entries like the following:

node destination gateway

vx1 150.12.2.0 150.12.1.1 (network)
The routing table for hl to communicate with Network A includes entries like the
following:

node destination gateway
hl 150.12.1.0 150.12.2.1 (network)

317

VxWorks 5.3.1
Programmer’s Guide

A sender cannot send an ARP request for a host on another subnet or network.
Instead, if it does not know the hardware address for the gateway listed in its
routing table, it sends an ARP request for the gateway’s hardware address.

Figure 5-14 Subnets and ARP

Network A I I
150.12.1.20 150.12.1.1
| |
atewa
vx1 VX3 9 y
|
150.12.2.1
Network B I l
150.12.2.34
|
hl

5.5.2 Proxy ARP Overview

With proxy ARP, nodes on different subnetworks are assigned addresses with the
same subnet number. Because they appear to reside on the same network, they can
communicate directly and can use ARP to resolve each other’s hardware address.
The gateway node provides this network transparency by watching for and

answering ARP requests. The node providing this transparency is the proxy server.

The example configuration shown in Figure 5-14 looks different when proxy ARP
is used. As shown in Figure 5-15, the nodes vx1 and h1 now look as if they are on
the same subnet. Nodes h1 and vx1 are fooled by vx3 into thinking they can send
directly to each other, when they are actually sending to vx3. The gateway node,
vx3, ensures that the packets get to the correct destination.

318

Figure 5-15

5

Network
Proxy ARP Example

Network A I I
150.12.1.20 150.12.1.1

| |

proxy
vx1 server | VX3

|
150.12.1.2

Network B I !

150.12.1.34
|
hl

5.5.3 Routing Issues on the Proxy Server

The proxy server provides network transparency by listening to and answering
ARP messages, and by manipulating its routing tables. Suppose the proxy server
had two interfaces: shared-memory network and Ethernet. Nodes residing on
different interfaces can have the same network address if host-specific routes were
used on one interface (shared-memory network) and network routing was done on
the other (Ethernet).

In the example in Figure 5-16, vx1 and h1 have the same network address,
150.12.1.0. The proxy server, vx3, has a routing table like the following example:

Destination Gateway

150.12.1.6 (host) 150.12.1.8
150.12.1.7 (host) 150.12.1.8
150.12.1.0 (network) 150.12.1.60

The network on which the proxy server performs host-specific routing (or for
which it is acting as a proxy) is referred to as the proxy network. The proxy server
has a host-specific route to each node on the proxy network. The network interface
on which the proxy server performs network routing is called the main network. In
the example in Figure 5-16, the shared-memory network is the proxy network and
the Ethernet is the main network. The routing table of vx3 has host-specific routes
for both vx1 and vx2. To send to nodes h1 and h2, it uses the network route

319

VxWorks 5.3.1
Programmer’s Guide

Figure 5-16 Proxy Server Example

I I I Shared-Memory

150.12.1.6 150.12.1.7 150.12.1.8 Network

R 1 1

vx1 VX2 vx3
|
150.12.1.60
I I 1 Ethernet
150.12.1.62 150.12.1.61
| |
h2 hi

(150.12.1.0). There can be multiple proxy networks per main network. However,
there can only be one main network per network/subnet number.

Although host-specific routes can be used on all interfaces for complete generality,
a VxWorks shared-memory network usually is configured so that one side of the
proxy server contains the majority of nodes (the Ethernet side). Therefore, in this
case itis reasonable to use this network as the main network. Also, it is best to keep
the host-specific routes to a minimum, because when resolving routes, the proxy
server first searches all host-specific routes, and then all network routes.

5.5.4 Proxy ARP Protocol

ARP Requests for Proxy Clients

If the proxy server receives an ARP request for which the destination is a node on
a proxy network (proxy client), the proxy server generates an ARP reply with its
own hardware address as the source hardware address. This happens only if the
node that generated the ARP request does not reside on the same proxy network
as the destination proxy client because if they are on the same network, the
destination proxy client answers for itself.

320

5
Network

In the example in Figure 5-16, if vx1 broadcasts an ARP request for 150.12.1.7, vx2
replies to the request, not the proxy server vx3. However, if hl broadcasts an ARP
request for 150.12.1.7, the proxy server (vx3) replies with its own hardware
address.

ARP Requests from Proxy Clients for Non-proxy Clients

If an ARP request comes from a proxy network and the destination address is not
a proxy client, the proxy server tries to resolve the request. If the destination of the
ARP request is known, the server generates and sends an ARP reply to the source
proxy client. If the destination was not resolved previously, the server forwards the
ARP request to the proxy network’s corresponding main network (replacing the
source hardware address in the ARP message with its own outgoing interface
hardware address). For example, in Figure 5-16, vx1 sends an ARP request for
150.12.1.62. If vx3 knows the destination, it sends an ARP reply to vx1. Otherwise
it forwards the request to the Ethernet.

ARP Replies from the Main Network

If the proxy server gets an ARP reply, the server checks to see if the destination is
a proxy client. If it is, and the server previously forwarded this request, then the
server forwards the ARP reply back to the proxy client (replacing the source
hardware address in the ARP reply message with its own). In the previous
example, if h2 replies to the request for the Ethernet address of 150.12.1.62, the
proxy server (vx3) records the address for itself and then forwards the reply to vx1
(with vx3’s own hardware address substituted for h2’s).

5.5.5 Broadcast Datagrams

All nodes on a logical network are expected to receive an IP broadcast for that
network (for example, 150.12.1.255). Thus, broadcasts must be passed through the
proxy server so that nodes on both the proxy network and the main network
receive them. Because most broadcast traffic is extraneous, it is desirable to
minimize the number of forwarded shared-memory network broadcasts, thus
keeping shared-memory network traffic to a minimum.

To minimize and control shared-memory network broadcast traffic, the proxy
server must be configured to forward broadcasts only to a specified set of
destination UDP ports. Ports are enabled using the routine proxyPortFwdOn(),

321

VxWorks 5.3.1
Programmer’s Guide

and are disabled with proxyPortFwdOff(). Only the BOOTP server port (67) is
enabled by default.

If a broadcast datagram originates from a proxy network (and the port is enabled),
the server forwards the broadcast to the main network, and to all other proxy
networks that have the same main network. For example, in Figure 5-17, if a
datagram comes from sm1, it gets forwarded to In0 and smoO.

Figure 5-17 Broadcast Datagram Forwarding

proxy network 0 (smQ)

vx1

main network (In0)

proxy network 1 (sm1)

If the datagram originates from a main network (and the port is enabled), the
server forwards the broadcasts to all the main network’s proxy networks. For
example, in Figure 5-17, a datagram from In0 is forwarded to both sm0 and sm1.
To prevent forwarding loops, b